

Recent Antenna Calibration Developments at IFE

Johannes Kröger, Yannick Breva, Tobias Kersten, Steffen Schön (P2: 015) Institut für Erdmessung, Leibniz Universität Hannover, Germany

Introduction

- Phase Center Corrections (PCC) mandatory for precise and accurate GNSS-based positioning
- Institut f
 ür Erdmessung (IfE) estimates PCC in the field by use of a robot and real GNSS signals
- Estimation of multi-frequency and multi-GNSS PCC including all signals [1]
- **Research Activities**
- Estimation of Codephase Center Corrections (CPC) [2]

Figure 1: Robot used at IfE to calibrate antennas.

Impact on Geodetic Parameters

- In-house standardized simulation tool allows to assess the impact on geodetic parameters with changing processing parameters
 - ► Input PCC, timespan, local position
 - multi-GNSS frequencies, linear combinations, sampling rates
 - elevation cut-off angle, observation weighting scheme
- \triangleright Comparison of simulation with PPP results based on real data: $\Delta < 0.5$ mm
- Findings: Developed simulation tool is powerful to analyse impact of ΔPCC on geodetic parameters

- Application of special calibration settings & different processing strategies [3]
- Influence of receivers on resulting PCC [4]
- Analysing environmental effects (DFG project MAESTRO, P1: 019)

Parametrization of Phase Center Corrections

- \blacktriangleright Usually by Spherical Harmonics (SH) up to degree and order = 12 Drawback: SH defined for a sphere, PCC estimated and provided for the upper hemisphere of Antenna under Test (AUT)
- \blacktriangleright AUT tilted by robot \rightarrow observations present at lower hemisphere
- > Due to technical restrictions for maximum tilting angle & cut-off angles: $\approx 85\%$ of observations lie on upper hemisphere resulting in unstable normal equation system $(cond(N) \approx 10^{10}) \rightarrow constraints needed, but symmetry$ assumptions questionable

Use of Hemispherical Harmonics

Based on [5], associated Legendre polynomials are shifted to interval of existing zenith angles z on antenna hemisphere $\rightarrow cond(N) < 10^2$ without addtional constraints

Figure 5: In-house standardized simulation environment to assess impact of ΔPCC on geodetic parameters [7].

Selection Criteria for new PCC values

- \blacktriangleright Impact of \triangle PCC on topocentric 3D-position should not exceed certain threshold, e.g. 4 mm (expectable accuracy for PPP/DD processing)
- \blacktriangleright Assessing this impact by computing \triangle PCC w.r.t. IGS type mean values
- Formal errors, repeatability of individual calibrations and subdaily variations need to be considered, cf. Fig. 6.

Formal Errors of Gridded PCC

- Formal errors of gridded PCC $\sigma_{\rm PCC} < 0.35 \,\rm mm \ (s_0^2 \ set to \ variance)$ of input observations, i.e. dSD)
- $\triangleright \sigma_{PCC}$ depends mainly on the sampling of antenna hemisphere during calibration process: smallest at mid-zenith angles (most observations) and increasing with higher zenith angles

Comparison Metrics on Pattern Level

Scalar measures proposed in [6] allow analysing & clustering of PCC from different calibrations (ΔPCC) \rightarrow Assessing how well calibrations match \blacktriangleright Usually, constant parts in PCC can not be estimated \rightarrow scalar measures should be independent of constant parts, which is the case for std(ΔPCC) but

Figure 6: Impact of ΔPCC on topocentric 3D-position for four individual calibrations of NOV703GG.R2 NONE antenna: GPS L1, elevation cut-off angle = 7°, elevation-dependent weighting, location: Hannover (Germany), two days data with $\delta t = 30$ s averaged over an interval of 30 min. Left: impact per epoch, shadowed areas indicate impact of estimated PCC $\pm \sigma_{PCC}$. Right: Differences of IGS to indiv. typemean and corresponding min/max deviation for first 24 h (red), and daily min/max deviations (black).

References

J. Kröger et al. "Multi-frequency multi-GNSS receiver antenna calibration at IfE: Concept - calibration results -[1] validation". In: Advances in Space Research 68.12 (2021), pp. 4932–4947.

not for the maximum value

Figure 4: Scalar measures for $\triangle PCC$ of method *field robot* and *anechoic chamber* for individual antennas on EPN network sites.

- Y. Breva et al. "Estimation and Validation of Codephase Center Correction Using the Empirical Mode Decomposition". In: International Association of Geodesy Symposia. Springer Berlin Heidelberg, 2022, pp. 333–343.
- J. Kröger et al. "Are Phase Center Corrections Identical for Identical Frequencies from Different GNSS?" In: FIG 3 e-Working Week 2021: Smart Surveyors for Land and Water Management - Challenges in a New Reality, Virtual, FIG e-Working Week. June 2021.
- Y. Breva et al. "On the Impact of GNSS Receiver Settings on the Estimation of Codephase Center Corrections.". |4| In: International Association of Geodesy Symposia (2023).
- P. Gautron et al. "A Novel Hemispherical Basis for Accurate and Efficient Rendering". In: *Rendering Techniques* [5] (2004), pp. 321–330.
- T. Kersten et al. "Comparison concept and quality metrics for GNSS antenna calibrations". In: Journal of Geodesy 6 96.7 (2022).
- J. Kröger et al. "How Do Different Phase Center Correction Values Impact GNSS Reference Frame Stations?" In: |7| IAG International Symposium on Reference Frames for Applications in Geosciences (REFAG). 2022.
- J. Kröger et al. "On the Potential of Image Similarity Metrics for Comparing Phase Center Corrections". In: 8 International Association of Geodesy Symposia. Springer Berlin Heidelberg, 2022.

Johannes Kröger

Y. Breva, T. Kersten, S. Schön

www.ife.uni-hannover.de

kroeger@ife.uni-hannover.de

Schneiderberg 50 D-30167 Hannover

Institut für Erdmessung

IGS 2024 Symposium and Workshop | Bern | Switzerland

July 1st - 5th, 2024