Galileo Precise Orbit and Clock Determination, POD concept at ESOC

Dr. Francesco Gini on behalf of the Navigation Support Office

ESA/ESOC – Navigation Support Office

Tour de l’IGS 6th Stop: Galileo Constellation Spotlight, 23/05/2023
Our primary Galileo activities cover different POD aspect:

- Routine Galileo Precise Orbit Determination products
- Models development:
 - Satellite Orbit Dynamic modelling
 - Attitude and Clock modelling
- Special Orbit and Clock products for scientific analyses (e.g., Relativistic studies)
- Further analyses for Galileo such as:
 - metadata test & validation
 - clocks performance analysis
Dynamic POD approach, based on daily batch processing

Important for the accuracy of the Galileo products:
- Quality of the Galileo signals
- Satellite modelling
- Stations network geometry

Galileo Modelling at ESOC:
- Galileo orbital error is driven by the high area-to-mass ratio property
- ESOC models are considered of very good quality
- Galileo dynamic modelling in continuous improvement (in the upcoming slides)

<table>
<thead>
<tr>
<th>GNSS SV</th>
<th>∆A/m [m²/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galileo FOC</td>
<td>0.0028</td>
</tr>
<tr>
<td>GPS III</td>
<td>0.0021</td>
</tr>
<tr>
<td>GPS IIR</td>
<td>0.0017</td>
</tr>
<tr>
<td>BDS-3 SECM</td>
<td>0.0016</td>
</tr>
<tr>
<td>GPS IIF</td>
<td>0.0015</td>
</tr>
<tr>
<td>BDS-3 CAST</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

Box-Wing

Raytracing
IGS station network combined with EGON for Galileo and other GNSS processing
SLR residuals of Galileo FOC* - continuously improved modelling

*Galileo IOV performs similarly

ESA’s Non-Gravitational Force Models for One-Centimetre Orbit Determination Accuracy of Galileo Spacecraft, F. Dilssner et al, 8th International Colloquium. 2022
Galileo FOC orbit error – continuously improved modelling

Orbital Overlaps (mm)

- ECOM–2 only: 19.3 mm
- ECOM–1 + BW_PUB: 17.7 mm
- ECOM–1 + Fourier: 15.9 mm
- ECOM–1 + BW_NEW: 11.9 mm
- ECOM_LIGHT + BW_NEW: 11.5 mm

Orbital Prediction error after 1 day (cm)

- ECOM–2 only: 33.4 cm
- ECOM–1 + BW_PUB: 26.1 cm
- ECOM–1 + Fourier: 22.2 cm
- ECOM–1 + BW_NEW: 20.0 cm
- ECOM_LIGHT + BW_NEW: 21.1 cm

Orbital Prediction error after 14 days (m)

- ECOM–2 only: 35.7 m
- ECOM–1 + BW_PUB: 33.8 m
- ECOM–1 + Fourier: 31.7 m
- ECOM–1 + BW_NEW: 30.4 m
- ECOM_LIGHT + BW_NEW: 30.8 m

Note: graphics have different scales and units

ESA’s Non-Gravitational Force Models for One-Centimetre Orbit Determination Accuracy of Galileo Spacecraft, F. Dilssner et al, 8th International Colloquium. 2022
Continuous improvement of Galileo products

Development of Galileo orbit quality

Orbit overlaps at dayboundary Constellation Mean 3D RMS [mm]

Epoch

Number of Satellites

0 5 10 15 20 25 30
Galileo performance compared to other constellations

Statistics based on ESOC MGNSS Final Products, 2022

Multi-GNSS day-boundary overlaps (mm)
Conclusions

The ESA/ESOC Navigation Support Office is dedicated to:

• continuously enhancing the quality and performance of Galileo and other GNSS products.
• actively contributing to the IGS by publishing and providing support for Galileo, GPS, and GLONASS products (IGS FINAL).
• offering Multi-GNSS products encompassing all constellations.

The products are published and accessible on our webpage: http://navigation-office.esa.int/

For the latest updates and communications regarding the release of new products, please monitor the following:

http://navigation-office.esa.int/Important_Notices_and_Announcements.html

To further enhance its services, the ESA/ESOC Navigation Support Office has embraced the Galileo measured Phase Center Offset (PCO) and Variations (PCV) from the public metadata*, following the upgrade to the new ITRF2020 realization.

This approach is considered to have a more realistic interpretation, capturing the physical characteristics with greater accuracy.

*see Metadata presentation by F. Gonzales (ESA)
Conclusions

The ESA/ESOC Navigation Support Office is dedicated to:

- continuously enhancing the quality and performance of Galileo and other GNSS products.
- actively contributing to the IGS by publishing and providing support for Galileo, GPS, and GLONASS products (IGS FINAL).
- offering Multi-GNSS products encompassing all constellations.

The products are published and accessible on our webpage: http://navigation-office.esa.int/

For the latest updates and communications regarding the release of new products, please monitor the following:

http://navigation-office.esa.int/Important_Notices_and_Announcements.html

To further enhance its services, the ESA/ESOC Navigation Support Office has embraced the Galileo measured Phase Center Offset (PCO) and Variations (PCV) from the public metadata, following the upgrade to the new ITRF2020 realization.

This approach is considered to have a more realistic interpretation, capturing the physical characteristics with greater accuracy.

Thanks for your attention.