

Tour de l'IGS 4th Stop: BDS Constellation Spotlight

Beidou Coordinate System: Its Realization and Maintenance

Xiaogong Hu¹ Shanshi Zhou¹ Weijing Qu¹ Na Wei²

1. Shanghai Astronomical Observatory, Chinese Academy of Science

2. Wuhan University

2022-9-27

Background

- Since July, 2020, Beidou Satellite Navigation System (BDS) has provided various PNT services.
- Both BDS services and the compatibility and interoperability with other navigation systems require high accuracy realization and maintenance of BDS coordinate system(BDCS).
- To meet the accuracy requirements, satellite geodesy techniques are used for coordinate estimation of BDS monitoring stations, and alignment to the International Terrestrial Reference Frame (ITRF).

1.1 First Realization of BDCS

- Four joint campaigns with IGS stations. Coordinates of BDS monitor stations are aligned to ITRF2014 with a set of IGS stations.
 - \checkmark 1st, 2007 ~2009, station-wise surveying.
 - \checkmark 2nd, December 2011, campaign mode for 15 days.
 - \checkmark 3rd, April 2014, campaign mode for 15 days.
 - \checkmark 4th, 2016, regional joint surveying.
- Result: The first realization of BDCS is aligned to ITRF2014 with accuracy better than 1 cm.
 - Ref: F. Wu, BeiDou Coordinate System And Its First Realization , ICG-13, 2018

1.2 BDCS Update and Maintenance

Strategy:

- Daily network solutions with loose constrain obtained by estimating GNSS satellite orbital parameters and stations coordinates and then aligned to ITRF.
- Updating station coordinates when difference between estimated values and current values exceeding threshold (3 cm, currently)
- Annual maintenance

	Accuracy	Alignment to ITRF
WGS84 (G1762)	< 1 cm	ITRF2008
GTRF	< 1 cm	ITRF2014
PZ-90	< 2 cm	ITRF2014
BDCS (2019V01)	< 1 cm	ITRF2014

2.1 Data Processing

- Strategy:
- ✓ **Continuous** GNSS tracking data.
- Daily network solutions with loose constrained obtained by estimating GNSS satellite orbital parameters and stations coordinates.
- Aligning to ITRF by minimum constrain IGS station coordinates in ITRF2014.
- > Data:
- pseudo-range and carrier phase ionospheric-free combinations, from 2019.01.01 to 2019.03.31 of more than 120 stations distributed globally (IGS stations and regional stations)

BDCS(2019V01)

	BeiDou Coordinate System
Responsible Organization:	China Satellite Navigation Office(CSNO)
Abbreviated Name:	BDCS
Associated TRS:	ITRS
Coverage of Frame:	Global
Type of Frame:	3-Dimensional
Latest Version:	2019V01

Brief Description

BDCS is an Earth-centered, Earth-fixed terrestrial reference system. The definition of BDCS is in accordance with the specifications of the International Earth Rotation and Reference System Service(IERS), and its realization is aligned to the latest International Terrestrial Reference System(ITRF). The BDCS(2019V01) is the current solution obtained by adopting more than 100 stations.

Definition of Frame

Origin:							
Axes:							
Z-	Axis: The d	lirection of t	he IERS Re	ference Pole	(IRP)		
X	Axis: the in	itersection o	of the IERS	Reference M	leridian (IR)	M) and the p	lane passing
th	rough the or	rigin and not	rmal to the 2	Z-Axis.			
Y- co	Axis: toge ordinate sys	ther with Z stem.	-Axis and	X-Axis, cor	nstitutes a i	right-handed	orthogonal
Scale:	The length u	mit is the int	ernational s	ystem of uni	ts(SI) meter.		
Orient: 1984.0	ntion: Given	a by the Bur	eau Internat	ional de l'He	eure (BIH) o	rientation of	
Time E	volution: I	s time evolu	tion in orier	ntation will c	reate no resi	dual global	rotation with
gards to the	emst.						
-							
offining Par	ystem: Car	The moment	linates(X, Y	, Z)	Ellipsoid and	incidae with	the Earth's
befining Par enter of mas DCS Ellipso	ameters: T s, and the p oid are show	he geometri otation axis n as follows	inates(X, Y ic center of of the BDC	, Z) the BDCS (S Ellipsoid)	Ellipsoid co is the Z-Axi	incides with s. The parar	the Earth's neters of the
Defining Par enter of mas DCS Ellipso	ameters: T s, and the p id are show emi-major a	he geometri otation axis n as follows xis	inates(X, Y ic center of of the BDC	, Z) the BDCS (S Ellipsoid) a= 6378137	Ellipsoid co is the Z-Axi 7.0 m	incides with s. The parar	the Earth's neters of the
efining Par enter of mas DCS Ellipso G G co	ameters: T s, and the p vid are show emi-major a eocentric onstant(inclu	testan Coord he geometri otation axis n as follows xis grading the atm	in center of of the BDC avitational nosphere)	, Z) the BDCS S Ellipsoid i a= 6378137 μ=3.98600	Ellipsoid co is the Z-Axi 7.0 m 4418×10 ¹⁴ m	incides with s. The param 13/s2	n the Earth's neters of the
Defining Par enter of mas BDCS Ellipso G G CC Fl	ameters: T s, and the p id are show emi-major a eocentric onstant(inclu attening	he geometri otation axis n as follows xis gr uding the atn	Innates(X, Y ic center of of the BDC :: avitational nosphere)	, Z) the BDCS S Ellipsoid i a= 6378137 μ=3.98600- f=1/298.25	Ellipsoid co is the Z-Axi 7.0 m 4418×10 ¹⁴ m 7222101	incides with s. The parar 3/s2	the Earth's neters of the
Defining Par enter of mas BDCS Ellipsc G CC Fl Ea	ameters: T s, and the p pid are show emi-major a eocentric onstant(inclu attening arth's rotatic	testan Coord The geometri otation axis n as follows xis gr iding the atm on rate	innates(X, Y ic center of of the BDC :: avitational nosphere)	 , Z) the BDCS S Ellipsoid i a= 6378137 μ=3.98600. f=1/298.25 Ω_e = 7.29 	Ellipsoid co is the Z-Axi 7.0 m 4418×10 ¹⁴ m 7222101 21150 × 10	incides with s. The parar 13/s2	the Earth's neters of the
Defining Par enter of mas BDCS Ellipso G ccc FI Ea	ameters: T s, and the p pid are show emi-major a eocentric onstant(inclu attening arth's rotatic	testan Coord The geometri otation axis n as follows xis gr iding the atm on rate	innates(X, Y ic center of of the BDC :: avitational nosphere)	(x, z) the BDCS (x) Ellipsoid is a= 6378137 $\mu=3.98600$ f=1/298.25 $\Omega_e = 7.29$	Ellipsoid co is the Z-Axi 7.0 m 4418×10 ¹⁴ m 7222101 21150 × 10	incides with s. The param 13/s2) ⁻⁵ rad/s	n the Earth's neters of the
Defining Par enter of mas BDCS Ellipso G CC FI Er	ameters: 1 s, and the p oid are show emi-major a eccentric instant(inclu attening arth's rotatio	testan Coord he geometri totation axis n as follows xis gr ding the atm on rate ters;	innates(X, Y ic center of of the BDC :: avitational nosphere)	(x) the BDCS S Ellipsoid i a= 6378137 $\mu=3.98600$ f=1/298.25 $\Omega_{e} = 7.29$	Ellipsoid co is the Z-Axi 7.0 m 4418×10 ¹⁴ m 7222101 21150 × 10	incides with s. The parar (3/s2) ⁻⁵ rad/s	n the Earth's neters of the
Defining Par enter of mas BDCS Ellipso G G G F F Ea Transformatic	ameters: T s, and the p bid are show emi-major a eocentric onstant(inclu attening arth's rotatio ion Parameter	testan Coord he geometri totation axis n as follows xis gr ading the atm on rate ters: rs from BDC	in center of of the BDC :: avitational nosphere)	(, Z) the BDCS S Ellipsoid i a=6378137 $\mu=3.98600$ f=1/298.25 $\Omega_{e}=7.29$) to ITRF20	Ellipsoid co is the Z-Axi 7.0 m 4418×10 ¹⁴ m 7222101 21150 × 10 14.	incides with s. The parar 13/s2 9 ⁻⁵ rad/s	n the Earth's neters of the
Defining Par enter of mas BDCS Ellipso G G C E F Transformatio	ameters: T s, and the p pid are show emi-major a eocentric onstant(inclu attening arth's rotation on Parameter Tx	testan Coord he geometri otation axis n as follows xis gr iding the atm on rate ters: rs from BDC	in center of of the BDC avitational nosphere) CS(2019V01	(, Z) the BDCS S Ellipsoid i $a=637813^{\circ}$ $\mu=3.98600^{\circ}$ $f=1/298.25^{\circ}$ $\Omega_{e}=7.29^{\circ}$) to ITRF20	Ellipsoid co is the Z-Axi 7.0 m 4418×10 ¹⁴ m 7222101 21150 × 10 14. Rv	incides with s. The parar i3/s2) ⁻⁵ rad/s	n the Earth's neters of the
Defining Par enter of mas IDCS Ellipso G CC Fi Eransformatic	ameters: T s, and the p id are show emi-major a cocentric onstant(inch attening arth's rotatio ion Parameter Tx (mm)	he geometri otation axis n as follows xis gr nding the atm on rate ters: rs from BDC Ty (mm)	Imates(X, Y ic center of of the BDC avitational nosphere) CS(2019V01 Tz (mm)	(mas) (x, z) (x) (x) (x) (x) (x) (x) (x) (x	Ellipsoid co is the Z-Axi 7.0 m 4418×10 ¹⁴ m 7222101 21150×10 14. Ry (mas)	Rz (mas)	s the Earth's neters of the
Defining Para enter of mass BDCS Ellipso C C E Fil E A Transformatic E Stimation	ameters: T s, and the p wid are show emi-major a ecocentric unstant(inclu- attening arth's rotation ion Parameter Tx (mm) -0.37	the geometric otation axis in as follows in as follows in a follows in a follows gr iding the atm on rate ters: rs from BDC Ty (mm) 1.12	Imates(X, Y ic center of of the BDC avitational nosphere) CS(2019V01 Tz (mm) -0.55	(mas) (x, z) (x) (x) (x) (x) (x) (x) (x) (x	Ellipsoid co is the Z-Axi 7.0 m 14418×10 ¹⁴ m 7222101 21150×10 14. Ry (mas) -0.02	incides with s. The parar (3/s2) s. The parar (3/s2) s. The parar (mas) 0.05	s the Earth's neters of the Scal (ppb) 0.011

www.beidou.gov.cn

2.1 Data Processing

- Data: 2019.0-2019.25 pseudo-range and phase LC from 120+ global stations.
- Processing: precise orbit determination
- ➢ Estimation:
 - > satellite orbital parameters
 - ► ECOM-9 SRP
 - station coordinates
 - > ZTD
 - phase ambiguity
 - satellite and station clock offsets
- Satellite Antenna PCO/PCV: IGS14.atx
- Alignment: minimum constrained IGS core station coordinate in ITRF2014

Coordinates time series

Coordinates differences between BDCS(2019v01) and ITRF2014 solutions

The difference is better than 1cm.

2.2 Accuracy

Selected stations to assess alignment accuracy

Station list

СНРІ	VACS	DAEJ
MAW1	REDU	СНИМ
KOUR	BRUX	ULAB
GUAM	MKEA	URUM
CRO1	KIRU	CKIS
STHL	NAUR	SYDN
KOKV	WROC	DARW
MADR	MGUE	KAT1
CEBR	QUIN	FAA1
EBRE	SANT	PERT
AREQ		

Transformation parameters from BDCS(2019v01) to ITRF2014

	Trans_x mm	Trans_y mm	Trans_z mm	Rotate_x mas	Rotate_y mas	Rotate_y mas	Scal ppb
Estimation	-0.37	1.12	-0.55	0.01	-0.02	0.05	0.011
Sigma	0.74	0.74	0.74	0.03	0.03	0.04	0.012
3*Sigma	2.22	2.22	2.22	0.09	0.09	0.11	0.037

Alignment accuracy: 2 mm

Methods

- > Several methods are adopted to assess the accuracy of BDCS maintenance
- ✓ 1. Consistency comparison of co-located station coordinates time series
- ✓ 2. Station coordinates repeatability
- ✓ 3. Station velocity comparisons
- ✓ 4. Transformation parameters between BDCS and ITRF2014
- ✓ 5. Broadcast ephemerides and precise orbit comparisons

3.1 Co-located stations

Co-located stations coordinates time series

✓ Apparent trend changes in horizontal and vertical components.

✓ Co-located sites coordinate variations show good consistency.

3.2 Station coordinates repeatability

E:1.8mm; N: 1.8mm; U: 4.3mm

E: 1.9mm; N: 2.2mm; U: 8.2mm

Repeatability better than 1 cm

3.3 Station velocity

BJFS velocity comparisons

	N(mm/yr)	E(mm/yr)	U(mm/yr)
BJSH (shao)	-10.3	28.4	3.1
BJFS (shao)	-11.8	29.3	4.4
BJFS (igs)	-11.6	31.7	1.9
BJFS (ITRF14)	-10.6	30.6	2.2
BJFS(IGb14)	-10.5	30.7	2.2

Velocity field comparisons

Velocity difference 2mm/yr (horizontal) and 3mm/yr (vertical)

3.4 Transformation between BDCS and ITRF2014

Daily solution transformation parameters time series

	Tx/mm	Ty/mm	Tz/mm	Rx/mas	Ry/mas	Rz/mas	Scal/ppb
Mean	-0.78	0.99	0.92	0.01	-0.01	0.03	-0.06
Std	1.25	1.58	1.32	0.08	0.05	0.06	0.04

Accuracy consistent with BDCS(2019V01)

Maintenance of the BDCS continuous and stabilization

- **Orbit comparison:** transformations between broadcast and precise orbits
- Station coordinates comparison: transformations between station coordinates of PPP using broadcast and precise products
- > Data:
 - BDS-3/GPS/GAL precise orbits of GFZ and broadcast ephemerides
 - 130 globally distributed MGEX stations for PPP processing
 - Time span from 2020.1 to 2020.12
 - PCO values :

BDS3: <u>http://www.beidou.gov.cn;</u> GPS:NGA(2018); GAL:GSC,(2019)

Translations

Blue/Red: orbit/coordinates comparison

Correlations between orbit/coor. comparisons

	DX	DY	DZ
BDS-3	0.14	0.10	0.93
Galileo	0.10	0.20	0.50
GPS	0.28	0.33	0.68

- Annual systematic errors found in ztranslation for BDS-3, showing manufacturer- and orbit-plane-dependent characteristics
- Random errors dominating GPS/GAL
- Results from orbit and coordinate comparisons are at the same level

Rotations

Correlations between orbit/Coor. comparisons

	RX	RY	RZ
BDS-3	0.79	0.94	0.91
Galileo	0.55	0.28	0.20
GPS	0.57	0.65	0.54

- Systematic errors in rotations also found in BDS-3 due to increasing errors of EOP predictions within one week, resulting in positioning errors up to 25 cm
- Rotations of GPS/GAL are stable within one week
- Results from orbit and SSC comparisons are also at the same level

Scale

Correlations between orbit/coor. comparisons

	SCL
BDS-3	0.02
Galileo	0.11
GPS	0.05

- No systematic errors in scale found in three systems
- But, negative biases found between orbits and SSC comparisons due to highly correlation between clock offsets and scale factor during PPP

4.1 Data Processing

- > Strategy:
- ✓ Continuous BDS data.
- Daily network solutions with loose constrained obtained by estimating BDS satellite orbital parameters and stations coordinates.
- ✓ Aligning to ITRF by minimum constrain IGS station coordinates in ITRF2014.
- > Data:
- ✓ 2019.10.01-2020.03.19, more than 200 global stations, including IGS stations and BDS stations.
- Accuracy evaluation
- ✓ Consistency analysis of BDS station coordinate
- ✓ Transformation parameters

4.2 Coordinates Repeatability and Comparisons

E: 5.9mm

N: 4.5mm

U: 12.5mm

Coordinate differences between BDS and GPS

E: 7.0mm N: 4.8mm U:13.8mm

Accuracy of site coordinates using BDS data about 1 cm

4.3 Coordinates Time Series

Time series comparison

Apparent trend changes in horizontal and vertical components.

Scatter of site coordinate time series larger when using BDS data!

	Tx/mm	Ty/mm	Tz/mm	Rx/mas	Ry/mas	Rz/mas	Scal/ppb
Mean	0.62	0.16	-0.61	0.02	0.00	-0.05	-0.01
Sigma	1.41	1.38	1.23	0.06	0.06	0.05	0.02

Accuracy of BDCS(BDS only) at millimeter level

Summary

- BDCS in high accuracy alignment with ITRF2014. Although BDS-3 broadcast orbits are constrained only by several regional stations, TRF accessible via BDS-3 broadcast orbits still coincides with ITRF2014 at cm level.
- Nonlinear characteristic evident in BDS station coordinate time series need further modeling.
- Only using BDS data from global tracking stations, coordinates can be estimated accurately and BDCS can be aligned to ITRF at mm level.
- > Joint forces from GNSS community are mostly welcome to improve BDCS.

THANKS !