

BDS phase center corrections: initial results and validation

Jing Guo, Chao Yang, Ziyang Qu, Xiaolong Xu, Qile Zhao

GNSS Research Center, Wuhan University, China

Tour de l'IGS 4th Stop 27 Sep 2022 Wuhan Online

Ground and in-orbit calibrations of BDS PCO/PCV

- Ground calibrations
 - Satellite and frequency-specific (B1/B2/B3) PCOs for BDS-2 as well as BDS-3 released by China Satellite Navigation Office (CSNO)
 - http://en.beidou.gov.cn/SYSTEMS/Officialdocument/2019a12/P020200323536112807882.atx
- In-orbit estimations

Reference	BDS-2	BDS-3	PCO	PCV	Frequency	Frame
Dilssner et al. (2014)	\checkmark			\checkmark	B1I/B2I	IGS08
Guo et al. (2016)	\checkmark			\checkmark	B1I/B2I	IGS08
Huang et al. (2018)	\checkmark				B1I/B2I	IGS08
Yan et al. (2019)		\checkmark (Up to C35)		\checkmark	B1I/B3I	IGS14
Xia et al. (2020)	\checkmark	$\sqrt{(Up to C37)}$			B1I/B3I	IGS14
Qu et al. (2021)	\checkmark	(Up to C37)			B1I/B3I	IGS14,R3
Villiger et al. (2021)	\checkmark	\checkmark		\checkmark	B1I/B3I	R3
Zajdel et al. (2022)	\checkmark	(no IGSO)			B1I/B3I, B1c/B2a	IGS14

• IGS14_WWWW.atx

- BDS-2: IGS conventional block-specific PCO values, and zero PCV
- BDS-3: Frequency and block-specific PCOs from TARC/CSNO since week 2056, and zero PCV
- IGS20_WWWW.atx
 - BDS-2: AC- and block means of PCO estimation from Dilssner et al. (2014), Guo et al. (2016), Sipthorpe et al. (2016), and Huang et al. (2018) for B1I/B2I, synthetic values derived for B3I to keep consistency with IF of BI/B2I; no PCV
 - BDS-3s: values from manufacturer or control center; no PCV
 - BDS-3: CSNO ground calibrations; no PCV

PCV

- 9° and 13° maximum nadir for IGSO and MEO, no extension
- The estimations are not adopted by IGS, possibly due to IF combination
- PCO
 - Suspicious quality of ground calibration values of C41 and C42 from CAST as well as those from SECM (Zajdel et al., 2022)
 - Potential scale inconsistency between BDS disclosed PCO and IGS20 or BDS-2 and BDS-3 in igs20.atx
- Terrestrial reference frame scale (Zajdel et al., 2022)
 - The scale discrepancy between the B1I/B3I and B1c/B2a solutions
 - The mean scale bias of 0.546 ppb is seemingly close to the scale difference between ITRF2020 vs. ITRF2014 (0.42 ppb)

- PCV estimation
 - IGS ground as well as FY3D onboard tracking data
 - FY3D: BDS-2 only in B1I and B2I during DOY 45-210, 2017
 - IF combination as well as raw data
- PCO estimation
 - IGS ground or their combination of ISL measurements in IGS14
 - One year (2021) IGS ground data
 - ISL measurements during DOY 10-238, 2020
 - BDS only processed only with NNT constrain
- Terrestrial reference frame scale
 - Selections of satellite group

Status of tracking stations

- Distribution of ground stations
 - 105 stations used for B1I/B3I
 - 77 stations used for B1c/B2a
- Daily number of stations for BDS tracking

 Block-specific and nadir-dependent PCV values for B1I and B3I IF combination based on ground stations

Extension of BDS phase center variations

- BDS-2: FY3C with B1I and B2I tracking capability
 - Extension to 10° and 15° for IGSO and MEO satellites

Block-specific and nadir-dependent PCV values for B1I and B2I IF comb.

Nadir(°)	0	1	2	3	4	5	6	7
BDS-2I	-1.52	0.19	-0.09	-0.24	0.79	0.42	0.81	0.16
BDS-2M	-2.96	-3.50	-2.44	-1.52	-0.02	1.75	3.35	3.19
Nadir(°)	8	9	10	11	12	13	14	15
BDS-2I	0.94	-1.46	1.76					
BDS-2M	3.39	2.91	1.10	-0.04	-1.11	-4.11	-7.10	-8.60

Slide

Dual-freq. raw data are processed directly with constraining the PCVs to the estimation of IF combinations of the dual-freq.

Online 2022

• Dual-freq. raw data are processed directly with constraining the PCVs to the estimation of IF combinations of the dual-freq.

- The consistency of B1I PCVs from different dual-freq. obs. is within 0.2 mm for IGSO and MEO, except for 0° up to 0.6 mm
- Better than 1 mm consistency for IF comb. PCVs estimated with raw or IF obs. for MEO, and lower than 2 mm achieved for IGSO

Solar radiation pressure on BDS orbit and PCO

Proper modeling of the SRP is a prerequisite for an accurate determination of PCO values

Box-wing model based on the adjusted optical properties used for BDS-3 satellite groups with modeling antenna trust as well as albedo

Satellite Group	#1	#2	#3	#4
CAST MEO	C19-C24	C32, C33	C36, C37 C41, C42	C45, C46
SECM MEO	C25, C26	C27-C30	C34, C35	C43, C44
IGSO	C38, C40	C39		

 SLR validation for the orbit solutions based on ground Lband or combination with ISL data

Online 2022

PCO estimation in IGS14 frame

- Time series of corrections to the disclosed values
 - More scatter due to BDS only solutions
 - Inconsistency ground calibration values of B1, B2, B3 for SECM

PCO estimation in IGS14 frame

- Satellite-specific corrections to the disclosed values
 - Large discrepancy for C41/C42 Z-PCO, C45/C46 X-PCO (CAST)
 - Up to meter differences for Z-PCO of IGSO satellites
 - Scatter estimation for SECM satellites

Online 2022

Stable estimation for C19-C24 as well as C32/C33, C36/C37

Estimated PCO values in IGS14 frame

		B1I/B3I			B1C/B2	2a	-
PRN	Х	Y	Z	Х	Y	Z	
C19'	-214	-12	1936	-212	-11	1918	Unit: mm
'C20'	-198	-14	2001	-201	-11	1987	
'C21'	-196	-8	1949	-201	-5	1940	8 CAST
'C22'	-207	-12	1973	-202	-13	1959	MEOs
'C23'	-205	-7	2007	-207	-2	1971	
'C24'	-193	-6	2056	-197	-4	2054	
'C32'	-185	-6	2036	-195	-7	1979	
'C33'	-196	-10	2052	-198	-9	1992	
'C36'	-189	-11	1830	-193	-13	1817	
'C37'	-198	-8	1854	-203	-12	1839	
'C41'	-175	-6	1925	-191	-13	1855	
'C42'	-206	-7	1904	-207	-12	1863	 B1I/B3I Z-PCO
'C45'	-196	-9	2093	-208	-14	1971	differences w.r.t CSNO
'C46'	-187	-6	2047	-188	-9	1961	released values
'C25'	74	-11	1102	79	-8	1032	
'C26'	68	-12	1177	70	-5	1079	✓ CAST: 32.4 mm
'C27'	39	-3	1296	39	-4	1175	SECM: 125.3 mm
'C28'	40	3	1293	40	2	1125	✓ 8 CAST [·] -28 4 mm
'C29'	38	-10	1404	40	-7	1284	
'C30'	34	-5	1348	39	-6	1191	• втс/вzа z-рсо
'C34'	53	-10	1205	58	-2	1081	differences w.r.t CSNO
'C35'	51	-8	1049	55	-6	971	released values
'C43'	69	-7	1283	68	1	1052	
'C44'	59	-9	1207	67	-6	960	• CAST. 44.2 mm
'C38'	-48	-310	3149	-52	-310	3094	✓ SECM: -10.3 mm
'C39'	-350	-312	3191	-308	-303	2660	🖌 8 CAST: -8.0 mm
'C40'	-81	-307	3330	-82	-303	3087	

5

Slide

PCO estimation with L+ISL band in IGS14 frame

- Time series of corrections to the disclosed values
 - Stable estimation in horizontal PCO, particularly in high β regime
 - Slight improvement for Z-PCO estimation

PCO estimation with L+Ka band

- Satellite-specific corrections to the disclosed values
 - Less data for satellites beyond C37, resulting in low quality of estimation (DOY 10-238, 2020)
 - Improvement for X- and Z-PCO, particularly for C41/C42, C45/C46, C43/C44, and IGSO satellites
 - Bias up to 29 mm in Z-PCO with aid of ISL data

Consistency with scale of IGS14

One-step BDS-3 only solution

NNR constrain applied

- 8 satellites (C21C22C23C24C32C33C36C37) PCO fixed
- PCO for other satellites estimated with orbit and site coordinates

B1I/B3I: 0.20 ppb; B1C/B2a: 0.21 ppb

Summary & remaining issues

- Ground and LEO onboard data used for PCV estimation
 - Extended and raw PCV
 - Raw PCVs to be extended and cover all frequencies
 - More LEO onboard BDS data
- Ground data used for PCO estimation of IGSO and MEO
 - Satellite-specific values derived with better SRP modeling
 - ✓ Suspicious quality of C41 and C42 as well as those from SECM
 - ✓ Meter-level discrepancy for IGSO
 - PCO for each single frequency
- Investigation on the scale of disclosed BDS-3 PCOs
 - Selection of satellite group
 - Consisted scale factor derived from B1I/B3I and B1c/B2a
 - ✓ A decent agreement with ITRF2014
 - Large discrepancy with scale of Galileo and GPS BLOCK III

References

- Dilssner F, Springer T, Schönemann E, Enderle W (2014) Estimation of satellite antenna phase center corrections for BeiDou. IGS workshop 2014, Pasadena, California, USA
- Guo J, Xu X, Zhao Q, (2016) Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. Journal of Geodesy. DOI:10.1007/s00190-015-0862-9
- Huang G, Yan X, Zhang Q, Liu C, Wang L, Qin Z (2018) Estimation of antenna phase center offset for BDS IGSO and MEO satellites. GPS Solutions. DOI:10.1007/s1029018-0716-z
- Qu Z, Guo J, Zhao Q (2021) Phase center corrections for BDS IGSO and MEO satellites in IGb14 and IGSR3 frame. Remote Sens. DOI:10.3390/rs130 40745
- Villiger A, Dach R, Prange L, Jaggi A (2021) Extension of the repro3 ANTEX file with BeiDou and QZSS satellite antenna pattern. In: EGU General Assembly 2021, EGU21-6287. DOI: 0.5194/egusphere-egu21-6287
- Xia F, Ye S, Chen D, Wu J, Wang C, Sun W (2020) Estimation of antenna phase center offsets for BeiDou IGSO and MEO satellites.GPS Solut. DOI:10.1007/s10291-020-01002-0
- Yan X, Huang G, Zhang Q, Wang L, Qin Z, Xie S (2019) Estimation of the Antenna Phase Center Correction Model for the BeiDou-3 MEO Satellites. Remote Sensing. DOI:10.3390/rs11232850.
- Zajdel R, Steigenberger P, Montenbruck O (2022) On the potential contribution of BeiDou-3 to the realization of the terrestrial reference frame scale. GPS Solutions. DOI:10.1007/s10291-022-01298-0