BDS-3 Precise Point Positioning Featured Service on GEO B2b signal

LU Jun

China Satellite Navigation Project Center

Sep. 27, 2022

Contents

1 Background

- 2 PPP-B2b product
- 3 Performance assessment
- 4 Conclusions

Background

□ BDS-3 Services

The full constellation of BDS-3 was officially put into service on July 31, 2020, consisting of 3 GEO, 3 IGSO and 24 MEO satellites to provide diversified services.

BDS-3 Constellation

Global Services

- Positioning, Navigation and Timing (RNSS)
- Global Short Message Communication (GSMC)
- International Search And Rescue (SAR)

Regional Services

- Satellite-based Augmentation System (SBAS)
- Ground Augmentation System (GAS)
- Precise Point Positioning (PPP)
- Regional Short Message Communication (RSMC)

4 Services related to RNSS service

Background

□ BDS-3 PPP Service

- The real-time PPP service is newly provided by BDS-3.
- Correction parameters, including satellite orbit, clock offset and DCB corrections, are transmitted by PPP-B2b signal from BDS-3 GEO satellites.
- > PPP-B2b ICD was released in July 2020.
- ➢ Beidou SPS was released in May 2021.

BeiDou Navigation Satellite System Signal In Space Interface Control Document Precise Point Positioning Service Signal PPP-B2b (Version 1.0)

China Satellite Navigation Office July, 2020 BeiDou Navigation Satellite System Open Service Performance Standard (Version 3.0)

China Satellite Navigation Office May, 2021

Constellation	HorizontalPositioning Accuracy (95%)	Vertical Positioning Accuracy (95%)	Convergence Time
BDS	≤0.3m	≤0.6m	≤30min
BDS+GPS	≤0.2m	≤0.4m	≤20min

Contents

- 2 PPP-B2b product
- 3 Performance assessment
- 4 Conclusions

□ Advantages of BDS-3 PPP Service

Satellite-based real-time PPP service	Typical type	Broadcast Link	Coverage Area	Characteristic
Commercial system	RTX	Skyterra satellite	Global	• Dedicated receiver
	OmniStar and StarFire	Inmarsat satellite		Paid serviceSpecific satellite
GNSS system	BDS3 PPP-B2b	B2b, GEO	China and surrounding region	FreeEmbedded

□ PPP-B2b Navigation Message Structure

- > BDS-3 three GEO satellites broadcast PPP-B2b message by I-component.
- Each message has a length of 486 bits, including message type (6 bits), CRC (24 bits), message data and its specific contents (456 bits)
- The broadcast time of each frame is 1 s.

Signal	Component	Carrier frequency (MHz)	Band width (MHz)	Modulation	Symbol rate (sps)	GEOs
PPP-B2b	I	1207.14	246	BPSK(10)	1000	available

The PPP-B2b_I navigation message frame structure

□ Message Type Definition

The clock corrections are broadcast every 6 s, while the other messages are updated every 48 s.

Message types	Information content	Information	Message	Update	Nominal
1	Satellite mask	content	type	interval	validity
2	Satellite orbit correction and user range accuracy index	Satallita mack	1	496	
3	Differential code bias	Satellite mask	T	405	-
4	Satellite clock correction	Orbit correction	2,6,7	48s	96
5	User range accuracy index	Differential code	3	48s	86400
6	Clock correction and orbit correction - combination 1	bias			
7	Clock correction and orbit correction - combination 2	Clock correction	4,6,7	6s	12
8-62	Reserved	User range	2.5.6.7	48s	96
63	Null message	accuracy index	_/~/~/		

□ BDS3 PPP-B2b Procedure

User Algorithms

• Differential Code Bias Correction

 $\tilde{l}_{sig} = l_{sig} - DCB_{sig}$

• Orbit Correction

 $\mathbf{X}_{orbit} = \mathbf{X}_{broadcast} - \delta \mathbf{X}$

Clock Correction

$$t_{satellite} = t_{broadcast} - \frac{C_0}{C}$$

User Algorithms	
Reference Broadcast Navigation Messages:	BDS CNAV1 of B1C GPS LNAV of L1C/A Galileo I/NAV (not available) GLONASS L1OCd (not available)
Coordinate System	BDCS
Time System	BDT
ARP/CoM	ARP
Clock datum	On B3I

Contents

1 Background

- 2 PPP-B2b product
- 3 Performance assessment
- 4 Conclusions

□ Availability of corrections

Empirical availability rate (EAR): the ratio of the length of the observation sub-arcs with available PPP-B2b corrections to the length of the total observation arcs.

EAR of PPP-B2b correction in China and surrounding area. The color bar represents the EAR value(unit : %)

Average number of **visible satellites** The color bar represents the average number of satellites

In China: EAR>80%, visible satellites >7

Xu at el. 2021

□ Assessment strategy

- **Receiver**: Femtomes-FB680
- **Time span**: 2020/8/1 2021/5/1
- **Reference**: GBM product
- Assessment method of orbit:

$$RMS = \sqrt{\frac{\sum(\Delta Orb)}{n}}$$

Assessment method of Clock:

$$RMS = \sqrt{\frac{\sum(\nabla \Delta Clk)}{n}}, STD = \sqrt{\frac{\sum(\nabla \Delta Clk - avg_{\nabla \Delta Clk})}{n-1}}$$

Assessment method of SISRE:

$$RMS = \sqrt{\frac{\sum(\Delta SISRE)}{n}}, STD = \sqrt{\frac{\sum(\Delta SISRE - avg_{\Delta SISRE})}{n-1}}$$

□ Assessment result of PPP-B2b orbit

BDS and GPS orbit RMS: decimeter level

□ Assessment result of PPP-B2b clock

	B2b		WUC		CNES	
	BDS	GPS	BDS	GPS	BDS	GPS
RMS(ns)	2.307	3.964	1.505	0.517	1.268	0.534
STD(ns)	0.211	0.259	0.306	0.122	0.198	0.097

BDS and GPS clock RMS: nanosecond level,

clock STD: better than 0.3 ns

□ Assessment result of PPP-B2b SISRE

	B2b		WUC		CNES	
	BDS	GPS	BDS	GPS	BDS	GPS
RMS (cm)	67.3	110.8	42.2	9.9	37.1	10.2
STD (cm)	3.9	6.2	6.7	2.8	4.1	1.4

BDS and GPS SISRE RMS: decimeter and meter level, respectively BDS and GPS SISRE STD: better than 7 cm

□ Data collection and processing strategy

Time span: 2020/7/26 - 2020/12/29

Station: 1 MGEX station + 5 IGMAS stations

Observations	Ionosphere-free combination of L1/L2 for GPS and B1I/B3I for BDS-3	
Sampling interval	30 s	
Elevation cutoff	7 degree	
Weighting strategy	Elevation-dependent: 1 for elevation (E) >30°, otherwise 2sin(E)	
	A-priori sigma: 3 mm and 3 m for the phase and code observation Weight ratio is 1:1 GPS and BDS-3 satellite	1 for
Satellite PCO/PCV	igs14.atx	
Receiver PCO/PCV	igs14.atx for GPS observations, use GPS values for BDS-3 observations	
Phase wind-up effect	Corrected	
Tide model	Solid tide; Polar tide; Ocean tide; IERS Conventions, 2010	
Tropospheric model	ZHD corrected by GPT and Saastamoinen model	
Mapping Function	GMF	
Satellite orbit and clocks	Fix to PPP-B2b products	
Receiver position	Static mode: daily constants	
	Kinematic mode: epoch-wise parameter without constrains between epochs	
ZWD	Random walk with constrains of 1.5 mm/ \sqrt{h}	
Receiver clock	White noise	
Ambiguity	Float	17

□ Static Mode

• Reference: post-processing mode result with GBM product

	BDS-	only	GPS+BDS		
Stations	Hor. (cm)	Ver. (cm)	Hor. (cm)	Ver. (cm)	
BJF1	1.1	2.4	1.1	2.2	
LHA1	2.5	2.3	2.2	2.0	
KUN1	2.5	3.1	2.7	2.7	
WHU2	9	1.6	8	1.4	
SHA1	4.2	4.0	2.6	2.4	
XIA1	1.3	2.0	1.4	1.8	
Mean	2.1	2.6	1.8	2.1	

Hor. and Ver. RMS of BDS-only: 2.1 and 2.6 cm Hor. and Ver. RMS of BDS+GPS: 1.8 and 2.1 cm

□ Kinematic Mode(accuracy)

- Reference: the static mode result with GBM products
- Convergence time: BDS-only (H: 0.3m, V: 0.6m); BDS+GPS (H: 0.2m, V:0.4m) for at least 10 minutes
- Accuracy indicator: 95% confidence

Hor. and Ver. RMS of BDS-only: 22 and 33 cm Hor. and Ver. RMS of BDS+GPS: 15 and 33 cm

□ Kinematic Mode(convergency time)

- Reference: the static mode result with GBM products
- Convergence time: BDS-only (H: 0.3m, V: 0.6m); BDS+GPS (H: 0.2m, V:0.4m) for at least 10 minutes
- Accuracy indicator: 95% confidence

Convergency time of BDS-only: ~17 min Convergency time of BDS+GPS: ~16 min

□ Kinematic mode for vehicle experiment

- Reference: RTK
- Convergence time: BDS-only (H: 0.3m, V: 0.6m); BDS+GPS (H: 0.2m, V:0.4m) for at least 10 minutes
- Accuracy indicator: 95% confidence

BDS-only (left) and BDS+GPS (right) kinematic PPP results for test

	BDS	BDS+GPS
Hor. (cm)	19.6	19.4
Ver. (cm)	47.6	37.9
Con. (min)	27.1	19.9

The positioning accuracy and convergence time are in accordance with the claim of convergence time in the performance specifications for BDS-3 open service.

□ Smart terminal positioning test

Smart terminal PPP-B2b positioning software

Smart

terminal

Analysis

(Single

Smart terminal single-frequency PPP: ~1m

Contents

1 Background

- 2 PPP-B2b product
- 3 Performance assessment
- 4 Conclusions

Conclusions

> EAR

better than 80% and maximum is up to 95%

> Orbit Accuracy

RMS: decimeter level

Clock Accuracy

RMS: nanosecond level

STD: better than 0.3 ns

> SISRE Accuracy

RMS: decimeter and meter level

STD: better than 7 cm

> PPP Accuracy

static centimeter-level and kinematic decimeter-level

Prospects

The test results of BDS PPP-B2b service achieve the proposed service accuracy in the BDS Open Service Performance Standard.

- Service optimization: more global navigation system, wider service area, better accuracy and convergence time.
- More application: Expanding from professional field to mass consumption field.

Thank you !