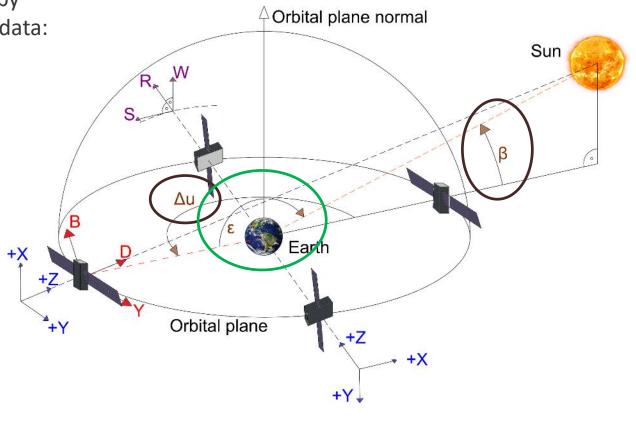


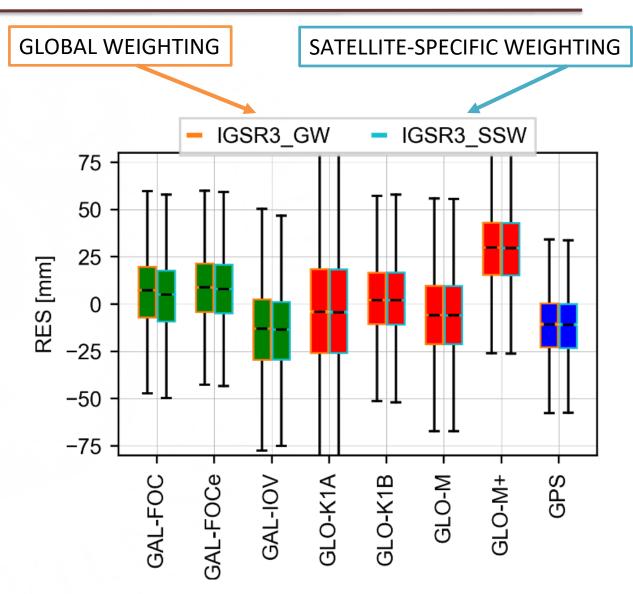
WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Assessment of IGS Repro3 orbits using SLR observations


R. Zajdel, K. Sośnica, G. Bury, D. Strugarek

¹Wroclaw University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics, Wrocław, Poland

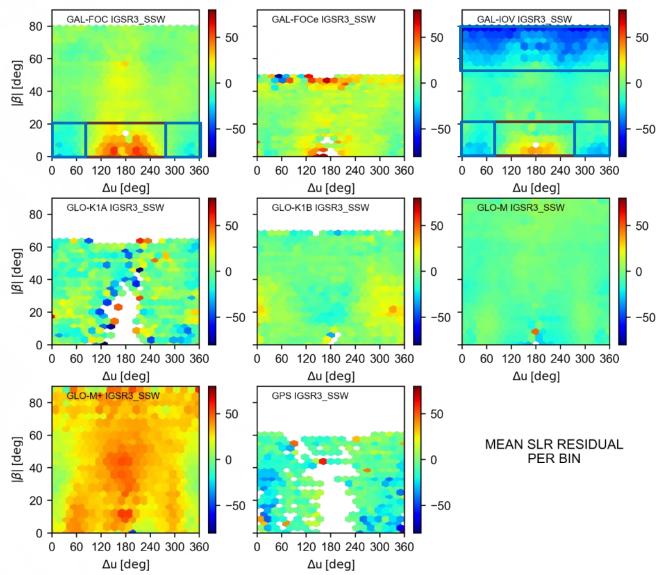
WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES


Study

- Validation of the combined IGS Repro3 orbits delivered by Geoscience Australia using Satellite Laser Ranging (SLR) data:
 - Traditional global AC weighting algorithm
 - Satellite-specific AC weighting algorithm
- Dataset 2013-2020 (main interest in Galileo)
- SLR validation of different satellite types: Galileo FOC, FOC eccentric orbit, IOV, GLONASS-M, -M+, -K1A, -K1B, GPS
- Searching for patterns in SLR residuals in different satellite-Sun-Earth geometry
 - SLR residuals as a function of β and argument of latitude of the satellite with respect to the argument of the latitude of the Sun (Δu),
 - SLR residuals as a function of elongation angle (ε)
- Possibilities to study SLR-related issues Satellite signature effect

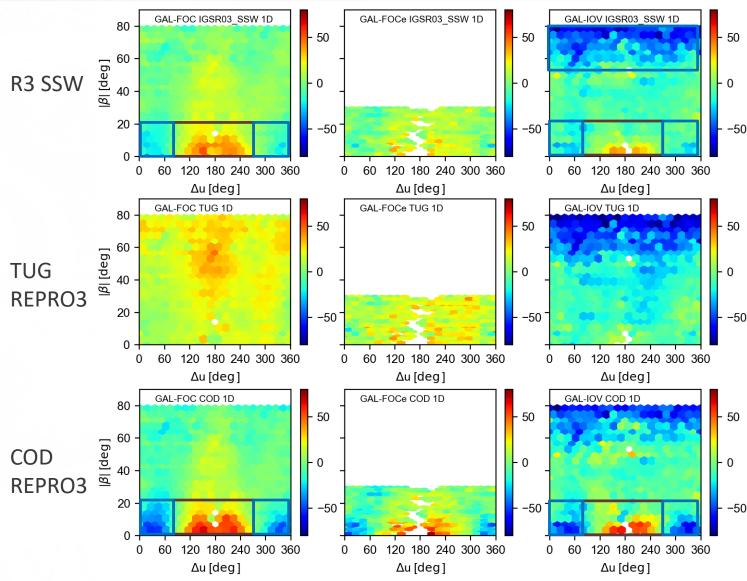
satellite-Sun-Earth geometry

Results for different satellite types



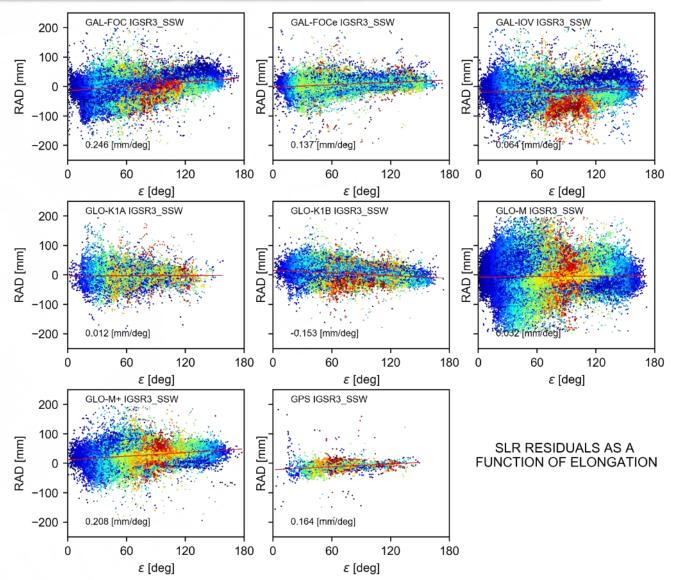
[mm]	MEAN		STD		RMS0	
type	GW	SSW	GW	SSW	GW	SSW
GAL-FOC	5.2	3.1	24.1	24.1	24.7	24.3
GAL-FOCe	7.7	7.1	25.2	24.7	26.3	25.7
GAL-IOV	-14.1	-14.6	31.1	28.9	34.2	32.4
GLO-K1A	-2.9	-3.0	37.7	37.7	37.8	37.8
GLO-K1B	3.8	3.7	23.8	23.8	24.1	24.1
GLO-M	-5.5	-5.5	29.2	29.3	29.7	29.9
GLO-M+	28.7	28.4	25.8	25.8	38.6	38.4
GPS	-11.2	-11.6	23.2	23.2	25.8	25.9

Improvement of SSW compared to GGW


	MEAN [%]	STD [%]	RMS [%]
GAL-FOC	-39.2	0.0	-1.4
GAL-FOCe	-8.9	-1.8	-2.4
GAL-IOV	3.8	-7.2	-5.3
GLO-K1A	2.3	0.0	0.0
GLO-K1B	-0.2	0.1	0.1
GLO-M	0.3	0.6	0.6
GLO-M+	-1.0	0.1	-0.6
GPS	2.9	0.2	0.8

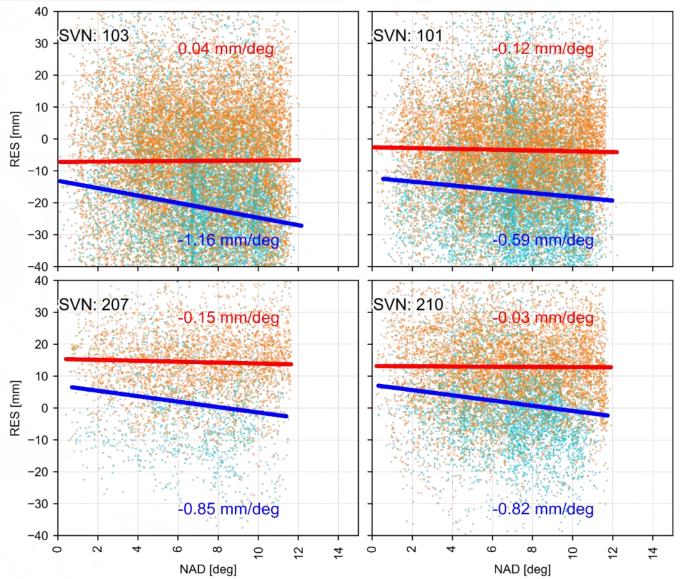
Orbit modeling issues - searching for patterns in SLR residuals

- SLR residuals as a function of <u>absolute β </u> and argument of latitude of the satellite with respect to the argument of latitude of the Sun (Δ u)
- Characteristic patterns for Galileo FOC (eclipsing seasons) and IOV satellites (eclipsing seasons and high β angles)
- Excellent quality for GLONASS-M and K1B

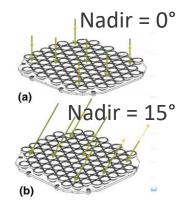

Galileo – Comparison with TUG and COD contributions (2019-2021)

SLR residuals as a function of absolute β and argument of latitude of the satellite with respect to the argument of latitude of the Sun (Δ u)

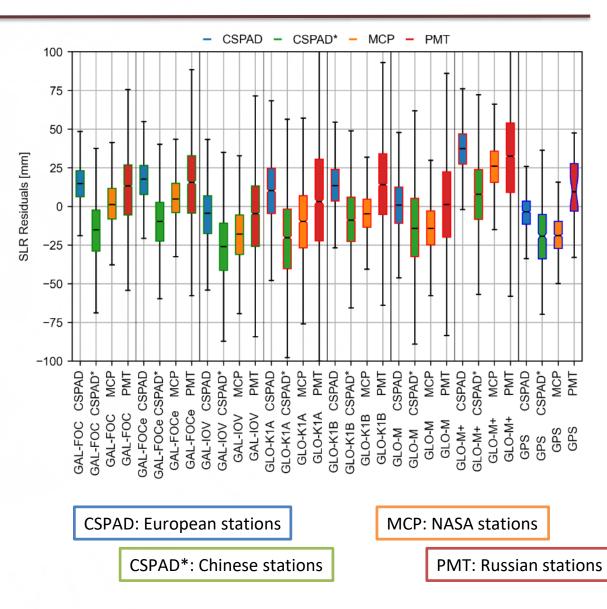
- R3 SSW solutions show similar patterns to those we know from ECOM2 solutions.
- These are, for example, amplified in the CODE solutions and not visible in the TUG solutions
- Validation of the remaining ACs in progress


Orbit modeling issues - searching for patterns in SLR residuals

SLR residuals as a function of elongation angle (ϵ). Dots are colored with the absolute height of the Sun above the orbital plane (β)


- Linear dependency between the elongation angle
 (ε) and SLR residuals for Galileo FOC satellites with
 a slope of 0.25 (FOC), 0.14 (FOCe), -0.15 (K1B), and
 0.21 mm/deg (M+).
- Excellent quality for GLONASS-M and K1A satellites

Possibilities to study SLR-related issues - satellite signature effect



SLR residuals as a function of nadir angle for multi-photon MCP and single-photon CSPAD

When taking SLR observations from the stations equipped with MCP detectors a linear dependency between the SLR residuals and nadir angle ("satellite signature effect") is visible (Mostly for Galileo IOV – large LRA)

Туре	Detector	Mean [mm]	Number of normal points [mm]
GAL-FOC	CSPAD	14.8	
	CSPAD*	-16.7	42940
	МСР	2.1	43968
	ΡΜΤ	10.7	6729
GAL-FOCe	CSPAD	16.9	10621
	CSPAD*	-10.9	6034
	МСР	5.3	10198
	РМТ	15.5	1604
GAL-IOV	CSPAD	-5.5	39480
	CSPAD*	-25.9	14629
	МСР	-18.2	42815
	ΡΜΤ	-5.9	5423

There are some substantial differences (2 cm) in the mean offset of SLR residuals when considering SLR observations from different stations.

Long time-series of the uniform in quality GNSS orbits allow for the study of detector-specific issues in Satellite Laser Ranging to the GNSS satellites.

Conclusions

- Analysis of SLR residuals indicate that there are only minor differences between the two delivered sets of combined solutions, which differ in terms of weighting strategy
 - Weighting strategy affects the mean and standard deviation of the individual satellite types, i.e., Galileo FOC and IOV
 - In general, the standard deviation of SLR residuals is at the level of 2.5 cm
 - Analysis of SLR residuals in Sun-Earth-satellite frame indicate some issue in the orbit modeling for the individual types of the GNSS satellites
 - Some of these issues have been already mitigated by IGS ACs (Galileo FOC in the case of TUG); thus, there is still ground for the improvement in the combination strategy
- Next steps:
 - SLR validation of all the AC contributions covering the full time frame (1994 2020)
 More insight in the orbit modeling issues and valuable information for the combination improvement
 - Long time-series of uniform in quality GNSS orbits allow for the study of detector-specific issues in Satellite Laser Ranging to the GNSS satellites

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Contact

Radosław Zajdel radoslaw.zajdel@upwr.edu.pl

ORCID

Connecting Research and Researchers

http://orcid.org/0000-0002-1634-388X

ResearchGate

https://www.researchgate.net/profile/Radoslaw-Zajdel-2

© ESA-Pierre Carril