Code/phase bias products at GFZ

Zhiguo Deng

deng@gfz-potsdam.de

GFZ German Research Centre for Geosciences Space Geodetic Techniques, Telegrafenberg, 14473 Potsdam

GFZMGX move to Un-Difference (UD) AR

Bias product:

- Since DOY 176 in 2021 GFZMGX provides code/phase bias and satellite attitude products (IGSmail).
- The code/phase bias are converted from wide/narrow-lane un-calibrated-phase-delay (UPD) and ionospheric DCB bias products from CAS. (Thank Simon and CAS).

Method:

- 1) In GFZ multi-GNSS POD processing float solution generated, then the fixed Double-Difference (DD) AR are added in NEQ as conditions with strong constrain.
- 2) the daily satellite/station UPDs are determined, and the ambiguities are fixed (adding strong constrain in NEQ).
- 3) The clock product absorbs the daily narrow-lane UPDs \rightarrow Integer clock

GFZMGX move to Un-Difference (UD) AR

IGS Workshop 2022, Biases/Calibration & PPP-AR

Why UD AR in POD?

- ➢ In GNSS data processing the AR can improve POD
- Most POD software packages use the Double-Difference (DD) from independent baselines to do AR
- DD from shorter baseline reduce more errors from the global parameters (like ERP, satellite orbit+clock...) than longer baseline -> better fix-rate
- In other word, the shorter baseline is less sensitive to the global parameters
- Longer baseline is better for POD.
- > The Un-Difference (UD) AR connects all spacious ambiguities in a session.
- > The float solution is zero-baseline solution.
- > The code/phase bias are global parameters.

Orbit-overlap validation DD vs. UD

	Ambiguity resolution	Baseline length
DD0	Double-differenced	0—2K km (80%)
DD3	Double-differenced	3K—4K km (90%)
UD	Undifferenced	

- DOY 001-150 in 2021, 140 stations, 5 min
- Ambiguity resolution for GPS, Galileo and BeiDou2/3 (IGSO+MEO)
- Three solutions with different AR constrain settings

Earth Rotation Parameters (ERP) validation

- ERP are compared with IGS final solution.
- Polar motion estimates significantly improved, especially the rates
- No impact on LoD

HELMHOLTZ

6

Day-boundary-discontinuity (DBD) of polar motion

- Polar motion DBD significantly reduced
- Mainly due to the improvement of polar motion rates

HELMHOLTZ

7

Conclusions & Outlook

- GFZMGX switched into UD since DOY 176 in 2021, provides integer clock, OSB/WL-UPD and satellite attitude.
- The impact on Earth center and station coordinate will be studied in the next step.
- In GNSS POD the UD AR can **improve** satellite orbit and polar motion significantly.

	GPS	GLOASS	Galileo	BDS2M	BDS3M			
Along	15%	19%	13%	6%	33%		x-pole	y-pole
Cross	15%	19%	13%	7%	31%	Offset	26%	12%
Radial	12%	20%	12%	16%	24%	Rate	27%	35%

Improvement of (UD.vs.DD0) orbit overlap and EOP

HELMHOL

Thank you for your attention

IGS Workshop 2022, Biases/Calibration & PPP-AR

Backup

IGS Workshop 2022, Biases/Calibration & PPP-AR

Orbit Precision: CJ (GEO/IGSO)

- Marginal impact on the orbit precision of GEO/IGSO satellite orbit precision
- GEO/IGSO have bad quality anyway
 - Tracking network
 - Solar radiation pressure modeling
- GEO/IGSO are less sensitive to ERP

HELMHOLTZ

11

Double-differenced (DD) Ambiguity Resolution

➢ GNSS POD

$$\rho_r^s = |\mathbf{x}^s - \mathbf{R}_{t2c} \cdot \mathbf{x}_r|$$
$$\mathbf{x}^s(t) = F(\mathbf{x}_0^s, \mathbf{v}_0^s, \mathbf{q}, t) + dx^s$$

Double-differenced (DD) ambiguity resolution

$$\lambda \cdot \nabla \Delta N_{r1,r2}^{s1,s2} = \lambda_1 \cdot \nabla \Delta N L_{r1,r2}^{s1,s2} - \lambda_{WL} \cdot \nabla \Delta W L_{r1,r2}^{s1,s2}$$

