

Effect of PCOs on phase biases

Jianghui Geng, Jihang Lin, Wuhan University

1

Satellite PCO model

- Classical model is to estimate frequency-independent satellite PCO by IGS ACs
 - Earlier GPS, GLONASS satellites
- Spacecraft manufacturers tend to provide trustworthy frequency-specific PCO calibrations
 - GPS Block III, Galileo, BDS satellites

_	G24 (GPS Block IIF)		
	Х	Y	Z
L1	394.00	0.00	1247.10
L2	394.00	0.00	1247.10

G04 (GPS Block IIIA)			
	Х	Y	Z
L1	3.80	-18.10	1082.20
L2	3.10	-16.20	590.30

• Frequency-specific PCO effect cannot cancel in the Melbourne-Wübbena combination

 $L_{\rm MW} = \frac{f_1 L_1 - f_2 L_2}{f_1 - f_2} - \frac{f_1 P_1 + f_2 P_2}{f_1 + f_2} \quad \leftarrow \text{Melbourne-Wübbena combination}$ $s_{\rm MW} = \frac{f_1 s_1 - f_2 s_2}{f_1 - f_2} - \frac{f_1 s_1 + f_2 s_2}{f_1 + f_2} = \frac{2f_1 f_2}{f_1^2 - f_2^2} \left(s_1 - s_2\right) \quad \leftarrow \text{Effect of satellite PCO}$

- $S_{
m MW}$ become zero only when PCO (*i.e.*, $m{s_1}$ and $m{s_2}$) are equal on the two frequencies

• The PCO effect on the Melbourne-Wübbena ranges from 0.1 to 2.3 cycles

Effect of PCOs on phase biases

• The satellite PCO effects are mostly absorbed into wide-lane phase biases

- Such phase bias products cannot be applied to uncombined PPP-AR
 - Wide-lane ambiguities in uncombined PPP are computed by raw ambiguity estimates
- Case study: uncombined PPP-AR at 15 stations for day 4, 2020 using Wuhan phase bias products with/out PCO corrections

	Biases without PCO corrections	Biases with PCO corrections
GPS fixing rate (%)	98.48/93.62	98.46/93.56
Galileo fixing rate (%)	71.53 /97.15	98.96/97.84

Effect of receiver PCOs on phase bias

- The receiver PCO effects are generally much less significant than the satellite PCO
 - Some exceed 0.2 cycles
- The receiver PCO effect is highly elevation and azimuth dependent

Approximate mitigation of PCO effects

• Approximate the true satellite PCO effect by the difference of frequency-specific z-PCO

Approximate mitigation of PCO effects

- The interoperability between wide-lane biases from different ACs can be recovered
- The consistency among the corrected wide-lane biases are less than 0.03 cycles

Summary

- The frequency-specific PCO effect cannot cancel in the Melbourne-Wübbena combination
 - Phase biases without correcting for PCO cannot be applied to uncombined PPP-AR
 - The interoperability between phase biases from different ACs might be corrupted
- The PCO effect on wide-lane biases can be mitigated by a *z*-PCO approximation strategy
- ACs are recommended to correct for PCO effects fully in their every observation modeling with no exception
 - For a rigorous processing, receiver PCO effects should also be corrected though