

IGMA-IGS Joint Trial Project Status Update

Tim Springer (ESA/ESOC) on behalf of the IGS

35 INTERNATIONAL G N S S SERVICE

IGS-IGMA Main Aims (from terms of reference)

- Make use of the IGS infrastructure and products
 - High quality precise orbit and clocks to be used as reference product for GNSS monitoring
 - Large high quality global tracking station network
 - Compute using well defined and documented principles:
 - Orbit and clock differences
 - Allows to easily compute SISRE
 - Signal in space UTC offset error (UTCOE)
 - PDOP and availability

- Signal in space user range error (SISURE)
 - Using data from the global tracking network

IGS-IGMA joint trial project

- In 2017 12 groups responded to the IGS call for participation
 - A smaller subset has been active in this project:
 - DLR, ESOC(lead), GMV, GOP, ICGC, SHAO, UNESP, WHU
 - Main Activities

- 2017-2019 Initial orbit and clock test with vastly different results
 - Resolved this with a number of simpler tests
- 2019 performed a detailed 1 day test and a 3 month comparison (February to April 2019)
 - Four groups participated in that
- ICG-IGMA comparisons only at "in person" meetings
 - So COVID hindered progress since 2020.....
 - Mainly monthly teleconfs on ICG-IGMA level

Orbit and Clock Comparison 2019

IGS

.

	٠	The next slides show a couple of results
		 Very controlled experiment
		 All IGS MACs used:
•		 Same MGNSS reference orbit
		 Same broadcast orbit file
	٠	Still got significant differences
		 Mostly resolved as being caused by different time intervals used for the different GNSS systems
		 Issues like validity time, start time, end time.
	٠	For the clock comparisons different approaches were used
		 Still discussions needed there
•		 Also one approach relies on bias product(s) being
		avallable.

GLONASS Differences in very controlled experiment

IGS

*

GPS Differences (driven by validity time differences)

Different Reference Points

- Broadcast orbits and clocks refer to the antenna phase center (APC_{brd})
- IGS Precise orbits refer to the center of mass (CoM) of the satellite
- IGS Precise clocks refer to antenna phase center (APC_{igs})
 - APC_{brd} hardly ever the same as APC_{igs}
- Values (APC_{brd}) have been consolidated

Open Point: Satellite Attitude

- The IGS precise positions have to be transformed
 - From the CoM to the APC_{brd} or visa versa
- The IGS precise satellite clocks have to be transformed
 - From APC_{igs} to APC_{brd} or visa versa or both to CoM
- The X- and Y-offsets ("horizontal") have a limited effect on the clock differences so just accounting for the Z-offset (radial direction) may be sufficient
 - Eclipse phases of the GNSS satellites

- In those phases the satellite rotations are very significant
- GNSS attitude law for eclipses not known for all systems
- Not even predictable for some (e.g. switch from Yaw to ON and visa versa)?

IGS-IGMA needs

.

-	•	IGS-IGMA needs information/activities from IGS:
		 Official IGS combined GNSS orbits and clocks
		 Biases for alignment of clocks for signal differences between precise and broadcast clocks
		 Improved broadcast navigation messages
		 Sometimes get "garbage" in broadcast
•		 Or a dedicated product for monitoring purposes
		 Possibly an enhancement of the RINEX Navigation file format (or a new dedicated format)
		 Possibly IGS timescale for UTCOE
	•	IGS-IGMA needs information/activities from ICG-IGMA:
		 the attitude law of the satellites, in particular during eclipse, that is used for the broadcast ephemerides

Summary

- Orbit differences have converged
- PDOP discussions ongoing in ICG-IGMA
 - does IGS-IGMA want to contribute to that?
- UTCOE to follow after orbit and clock comparison is resolved
- SISURE follows later
 - Computed from network of receivers
- ICG in person meeting October 2022
 - Possibility to compare results
 - A full year of comparisons is planned
 - Time for some renewed activities of IGS-IGMA

Slide courtesy of: Zhitao Wang,Shuli Song Shanghai Astronomical Observatory, **Chinese Academy of Sciences** 2021-09-15

PDOP and Availability

30°S

60°S

30°S

60°S

3.0

4.0

5.0

6 0

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%

GRID ELL

90°W 0° 90°E

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%

GRID EAL

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%

0° 90°E

90°W

12 **GRID IB**

Next Steps

- Update and review workplan of IGS-IGMA
 - To be done ASAP
- Broadcast Clock monitoring approach
 - Different approaches used, needs some discussion
- Test the reference point conversions
 - So far PCO offsets (both IGS and BRC) were ignored
- Does IGS-IGMA want to contribute to PDOP computations?
- Initial thought on UTC offset error computations
 - Possibility to use IGS Timescale for that?

