PPP-AR Working Group

Jianghui GENG

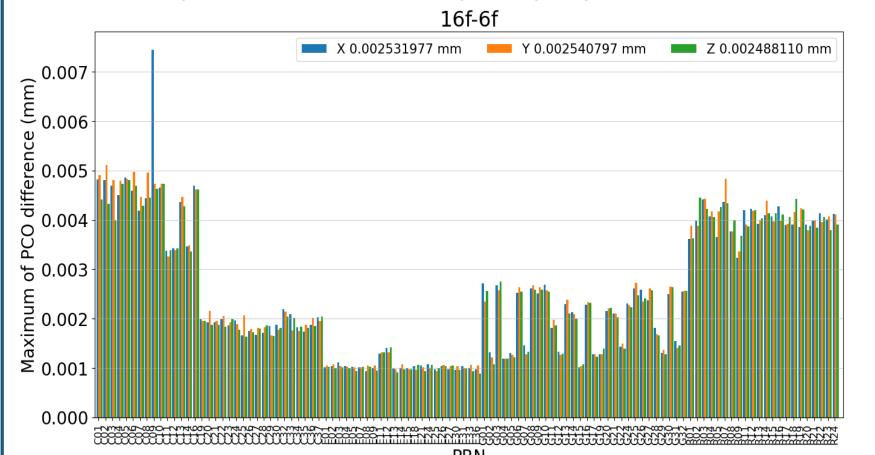
5th Open AM/WG Meeting

Overview of the Working Group

- Jianghui GENG, PPP-AR WG Chair, Wuhan University
- Coordinate phase bias generation in the IGS to facilitate PPP ambiguity resolution
- Main goals of the Working Group
 - Investigates the interoperability of PPP-AR products from various analysis centers (ACs)
 - Analyze the feasibility and benefits of a modernized combination process considering the consistency of the satellite clock and bias products
 - Initiate a pilot project to expose the combined clock/bias solution to open testing and crossvalidate the quality of ACs' clock/bias solutions

Recommendations

- Encourage more ACs to provide quaternions whose temporal resolution should be at least equal to that of the clocks and number of decimal digits should be properly set
- Antenna PCO should be considered in DCB and Melbourne-Wübbena computations
- Routine clock/bias combination and visualization online to cross-validate AC products
- Consistent standard and modeling of group-delay variation patterns
- Study how to reduce and calculate day boundary discontinuities of integer clocks and their impact on time transfer
- Study how to produce high-quality BDS/QZSS phase bias products



• Attitude quaternions from each AC

AC	Туре	Phase bias	GNSS		Sampling rate (s)		
			Orbit/Clock	Quaternion	Orbit	Clock	Quaternion
COD	final	GE	GRECJ	GRECJ	300	30	30
GFZ	rapid	GEC	GRECJ	GRECJ	300	30	30
GRG	final	GE	GRE	GRE	300	30	30
WUM	final	N/A	GREC	GREC	900	30	30
	rapid	GEC	GREC	GREC	300	30	30
IAC	final	N/A	GRECJ	N/A	300	30	N/A
SHA	rapid	N/A	GREC	N/A	300	30	N/A
JAX	final	N/A	GRJ	N/A	300	30	N/A

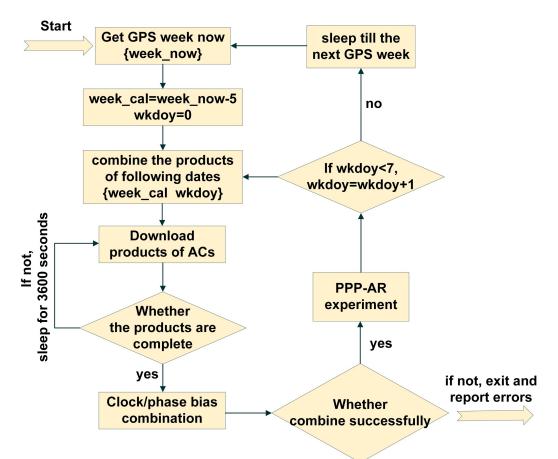
Attitude quaternions: 16 decimal digits originally

The maximum PCO differences (mm) when reducing the decimal digits from 16 to 6:

ΔX: 0.00745mm ΔY: 0.00511mm ΔZ: 0.00480mm

• The maximum PCO differences (mm) after reducing quaternion decimal digits to 3, 5, 6 or 7

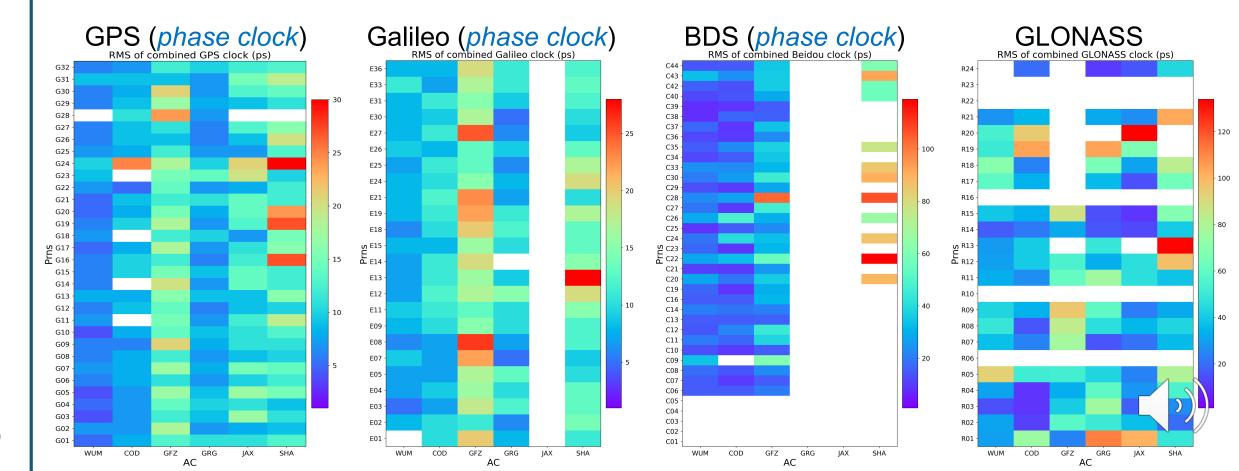
Decimal digits	ΔX (mm)	ΔΥ (mm)	ΔZ (mm)
3	5.044	4.909	4.792
5	0.050	0.051	0.052
6	0.00745	0.00511	0.00480
7	0.000501	0.000501	0.000504


• IGSMail-8279: A new keyword 'APC_MODEL' is added to the 'BIAS/DESCRIPTION' in the format of 'APC_MODEL igs20_WWWW.atx' when APCs are applied to geometry-free biases.

+BIAS/DESCRIPTION				
*KEYWORD	VALUE (S)			
OBSERVATION_SAMPLING	30			
PARAMETER_SPACING	86400			
DETERMINATION_METHOD	CO-ESTIMATED			
BIAS_MODE	ABSOLUTE			
TIME_SYSTEM	G			
RECEIVER_CLOCK_REFERENCE_GNSS	G			
SATELLITE_CLOCK_REFERENCE_OBSERVABLES	G C1W C2W			
SATELLITE_CLOCK_REFERENCE_OBSERVABLES	R C1P C2P			
SATELLITE_CLOCK_REFERENCE_OBSERVABLES	E C1X C5X C1C C5Q			
SATELLITE_CLOCK_REFERENCE_OBSERVABLES	C C2I C6I			
SATELLITE_CLOCK_REFERENCE_ORSERVARLES	1 C1X C2X			
*APC_MODEL	IGS14_2233.ATX			
DTAC (DECENTRATION				

A relevant article by Wuhan and GA is under review

• Routine clock/bias combination to cross-validate AC's products (under internal evaluation)



- MGEX products
 - COD/GFZ/GRG/SHA/JAX/WUMr
 - GPS/GLONASS/Galileo/BDS-2/3
- Reference orbit (operational)
 - WMC combination orbit by Wuhan
- Reference attitudes (operational)
 - by GROOPS

• Routine clock/bias combination to cross-validate AC's products (e.g., Day 268, 2022)

Future Work

- Visualization of combination results on IGS websites
- Day boundary discontinuities of satellite phase clocks
- Standardization of group delay variations across Bias, PPP-AR and ionosphere WGs.
- Achieve multi-GNSS technical excellence
 - Coordinating the various multi-GNSS contributions to PPP-AR across all ACs
 - Advocate the benefit of multi-GNSS through case studies and demonstrations

GNSS SERVICE

Thank You! Contact:

Jianghui Geng

jgeng@whu.edu.cn

