Rigorous propagation of Galileo-based terrestrial scale

Susanne Glaser1, Paul Rebischung2,3, Zuheir Altamimi2,3, Harald Schuh1,4

1GFZ German Research Centre for Geosciences, Potsdam, Germany
2Universit\'e de Paris, Institut de physique du globe de Paris, CNRS, IGN, Paris, France
3ENSG-Géomatique, IGN, Marne-la-Vallée, France
4Technische Universität Berlin, Chair of Satellite Geodesy, Berlin, Germany

Tour de l’IGS
Technical Mini-Workshop Series
June 02, 2021
1. Introduction
 - Background
 - Motivation

2. Method
 - Data
 - Preliminary step
 - Model fit
 - Back-substitution

3. Results
 - Scale factors w. r. t. IGSR3
 - Scale factors w. r. t. ITRF2014

4. Conclusions
 - Summary and outlook
Scale of previous ITRF solutions

- So far available GNSS satellite phase center offsets (PCOs) estimated with fixed ITRF scale, and depend conventionally on SLR and VLBI scale
Introduction

Method

Results

Conclusions

Rigorous propagation of Galileo-based terrestrial scale – Background

Scale of previous ITRF solutions

- So far available GNSS satellite phase center offsets (PCOs) estimated with fixed ITRF scale, and depend conventionally on SLR and VLBI scale
 - No independent scale realization possible by GNSS
Rigorous propagation of Galileo-based terrestrial scale – Background

Scale of previous ITRF solutions

- So far available GNSS satellite phase center offsets (PCOs) estimated with fixed ITRF scale, and depend conventionally on SLR and VLBI scale
 - No independent scale realization possible by GNSS

Unique opportunity

- European GNSS Agency disclosed metadata including z-PCOs for Galileo satellites
 - Realize independent scale in multi-GNSS solutions and possibly contribute to ITRF2020 scale
Preliminary work

Shortcoming of igsR3.atx z-PCOs

- A single correction to all igs14.atx GPS z-PCOs was estimated (same for GLONASS) based on preliminary multi-GNSS solutions for the period 2017-2018.
- Like in all other ANTEX files, satellite z-PCOs are constant (except for R730 & R737), with no uncertainties available.
Preliminary work

Shortcoming of igsR3.atx z-PCOs

- A single correction to all igs14.atx GPS z-PCOs was estimated (same for GLONASS) based on preliminary multi-GNSS solutions for the period 2017-2018.
- Like in all other ANTEX files, satellite z-PCOs are constant (except for R730 & R737), with no uncertainties available.
- No constraining with appropriate weighting possible (satellite z-PCOs fixed in repro3 solutions).
Rigorous propagation of Galileo-based terrestrial scale

New approach in this study
Rigorous propagation of Galileo-based terrestrial scale

New approach in this study

- Fit deterministic and stochastic model to time series of GPS/GLONASS z-PCO estimates of repro3 AC solutions
- Derive piecewise linear models of z-PCOs
New approach in this study

- Fit deterministic and stochastic model to time series of GPS/GLONASS z-PCO estimates of repro3 AC solutions
- Derive piecewise linear models of z-PCOs
 → Introduce time-variable z-PCOs with realistic uncertainties for scale estimation
Outline

1. Introduction
2. Method
3. Results
4. Conclusions
Data

<table>
<thead>
<tr>
<th>IGS repro3 SINEX solutions of four ACs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE (Center for Orbit Determination in Europe): 1994-01-02 to 2019-12-31</td>
</tr>
<tr>
<td>- From 2002-01-01 GLONASS; From 2013-01-01 Galileo</td>
</tr>
<tr>
<td>ESA (European Space Agency): 1995-01-01 to 2020-12-31</td>
</tr>
<tr>
<td>- From 2009-01-01 GLONASS; From 2015-01-01 Galileo</td>
</tr>
<tr>
<td>GFZ (GeoForschungsZentrum): 1994-01-02 to 2020-12-31</td>
</tr>
<tr>
<td>- From 2012-01-01 GLONASS; From 2013-12-21 Galileo</td>
</tr>
<tr>
<td>GRGS (Groupe de Recherche en Géodésie Spatiale): 2000-05-03 to 2020-12-31</td>
</tr>
<tr>
<td>- From 2008-11-04 GLONASS; From 2016-12-31 Galileo</td>
</tr>
</tbody>
</table>

[IGSMAIL-8026]
<table>
<thead>
<tr>
<th>Preliminary step: When does Galileo-based scale become precise and stable enough?</th>
</tr>
</thead>
</table>

CODE

ESA

GFZ

GRGS

→ Steady level after May 2017 when at least 17 Galileo satellites are included
Preliminary step: When does Galileo-based scale become precise and stable enough?

CODE

GFZ

ESA

GRGS

Glaser et al.,

Rigorous propagation of Galileo-based terrestrial scale
Preliminary step: When does Galileo-based scale become precise and stable enough?

→ Steady level after May 2017 when at least 17 Galileo satellites are included
Introduction

Method

Results

Conclusions

z-PCO time series

Determination of time series of GPS+GLONASS satellite z-PCO estimates
Determination of time series of GPS + GLONASS satellite z-PCO estimates

- After May 2017
 - Fix Galileo satellite z-PCOs (except for E102)
- Before May 2017
 - “no-net-translation” constraints of selected GPS and GLONASS satellite z-PCOs w. r. t. igsR3.atx
Determination of time series of GPS+GLONASS satellite z-PCO estimates

- After May 2017
 - Fix Galileo satellite z-PCOs (except for E102)
- Before May 2017
 - “no-net-translation” constraints of selected GPS and GLONASS satellite z-PCOs w. r. t. igsR3.atx
- Initial screening procedure: elimination of data before 1997, data with large formal errors, short time spans
Diverse features: periodicities, offsets, outliers, slow non-linear variations
Fit deterministic and stochastic models to all z-PCOs

Initial model: Single linear trend + variable white noise
Then: Iterative model refinement by adding more deterministic and noise components
Fit deterministic and stochastic models to all z-PCOs

Initial model: Single linear trend + variable white noise
Then: Iterative model refinement by adding more deterministic and noise components

Example ESA AC R730 – Fit after 33 iterations
Model fit – periodogram: GFZ

- grey: average periodograms of residuals from complete deterministic models
- red: white + flicker noise fit
- black: average periodograms of residuals from piecewise linear models
Back-substitution

Long-term stacking of GPS+GLONASS z-PCO time series

Estimation of daily “transformation parameter” before May 2017 to remove initial “no-net-translation” constraint and get piecewise linear z-PCO models independent from igsR3.atx, with realistic uncertainties.

New piecewise linear z-PCO models are then back-substituted into the daily AC SINEX solutions, and their scale is compared to that of the IGSR3 reference frame.

→ Result: Galileo-based scale independent of igsR3.atx (and SLR/VLBI)

Glaser et al.,
Rigorous propagation of Galileo-based terrestrial scale
Long-term stacking of GPS+GLONASS z-PCO time series

- Estimation of daily “transformation parameter” before May 2017 to remove initial “no-net-translation” constraint and get piecewise linear z-PCO models independent from igsR3.atx, with realistic uncertainties
Long-term stacking of GPS+GLONASS z-PCO time series

- Estimation of daily “transformation parameter” before May 2017 to remove initial “no-net-translation” constraint and get piecewise linear z-PCO models independent from igsR3.atx, with realistic uncertainties
- New piecewise linear z-PCO models are then back-substituted into the daily AC SINEX solutions, and their scale is compared to that of the IGSR3 reference frame
Long-term stacking of GPS+GLONASS z-PCO time series

- Estimation of daily “transformation parameter” before May 2017 to remove initial “no-net-translation” constraint and get piecewise linear z-PCO models independent from igsR3.atx, with realistic uncertainties

- New piecewise linear z-PCO models are then back-substituted into the daily AC SINEX solutions, and their scale is compared to that of the IGSR3 reference frame

→ Result: Galileo-based scale independent of igsR3.atx (and SLR/VLBI)
Outline

1. Introduction

2. Method

3. Results
 - Scale factors w. r. t. IGSR3
 - Scale factors w. r. t. ITRF2014

4. Conclusions
Introduction

Method

Results

Conclusions

Scale fit w. r. t. IGSR3, Example: GFZ

Glaser et al.,
Rigorous propagation of Galileo-based terrestrial scale
Scale factors w. r. t. IGSR3

IGSR3 reference frame - repro3 solution based on igsR3.atx file

<table>
<thead>
<tr>
<th></th>
<th>scale offset @2010.0 [mm]</th>
<th>scale rate [mm/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cod</td>
<td>-0.1 +/- 0.7</td>
<td>0.04 +/- 0.05</td>
</tr>
<tr>
<td>esa</td>
<td>0.8 +/- 0.8</td>
<td>0.06 +/- 0.07</td>
</tr>
<tr>
<td>gfz</td>
<td>0.5 +/- 0.9</td>
<td>-0.04 +/- 0.07</td>
</tr>
<tr>
<td>grg</td>
<td>-0.1 +/- 0.8</td>
<td>0.01 +/- 0.07</td>
</tr>
</tbody>
</table>
Mean scale offsets at epoch 2010.0 and scale rates w.r.t. ITRF2014

<table>
<thead>
<tr>
<th>AC</th>
<th>scale offset @2010.0 [mm]</th>
<th>scale rate [mm/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGS repro</td>
<td>7.6 +/- 0.2</td>
<td>0.20 +/- 0.02</td>
</tr>
<tr>
<td>cod</td>
<td>7.8 +/- 0.7</td>
<td>0.23 +/- 0.05</td>
</tr>
<tr>
<td>esa</td>
<td>8.7 +/- 0.8</td>
<td>0.25 +/- 0.07</td>
</tr>
<tr>
<td>gfz</td>
<td>8.4 +/- 0.9</td>
<td>0.15 +/- 0.07</td>
</tr>
<tr>
<td>grg</td>
<td>7.8 +/- 0.8</td>
<td>0.20 +/- 0.07</td>
</tr>
</tbody>
</table>

→ 4 ACs agree within 1 mm for scale offset; 0.1 mm/yr for scale rate
Scale factors w. r. t. ITRF2014

Comparison with the other space geodetic techniques

- VLBI contribution to ITRF2014
- SLR test ASI solutions
- DORIS contribution to ITRF2014
- GNSS repro3 constant z-PCO
- GNSS repro3 GFZ pwl z-PCO

Glaser et al.,
Rigorous propagation of Galileo-based terrestrial scale

Tour de l’IGS 02/06/2021 19 / 22
Outline

1. Introduction
2. Method
3. Results
4. Conclusions

Glaser et al.,
Rigorous propagation of Galileo-based terrestrial scale
Conclusions

Rigorous re-evaluation of all GPS and GLONASS satellite z-PCOs
Conclusions

Rigorous re-evaluation of all GPS and GLONASS satellite z-PCOs

- Piecewise linear models of GPS and GLONASS z-PCOs (vs. igsR3.atx with constant z-PCOs)
Conclusions

Rigorous re-evaluation of all GPS and GLONASS satellite z-PCOs

- Piecewise linear models of GPS and GLONASS z-PCOs (vs. igsR3.atx with constant z-PCOs)
- Back-substitution to repro3 solutions → refined Galileo-based scale:
Conclusions

Rigorous re-evaluation of all GPS and GLONASS satellite z-PCOs

- Piecewise linear models of GPS and GLONASS z-PCOs (vs. igsR3.atx with constant z-PCOs)
- Back-substitution to repro3 solutions → refined Galileo-based scale:
 - Differences to igsR3.atx-based scale are essentially linear
 - 4 ACs (CODE, ESA, GFZ, GRGS) agree within 1 mm for scale offset; 0.1 mm/yr for scale rate w. r. t. ITRF2014
 - Refined AC-specific estimates agree with scale of IGS repro3 solutions within same level
Conclusions

Rigorous re-evaluation of all GPS and GLONASS satellite z-PCOs

- Piecewise linear models of GPS and GLONASS z-PCOs (vs. igsR3.atx with constant z-PCOs)
- Back-substitution to repro3 solutions → refined Galileo-based scale:
 - Differences to igsR3.atx-based scale are essentially linear
 - 4 ACs (CODE, ESA, GFZ, GRGS) agree within 1 mm for scale offset; 0.1 mm/yr for scale rate w. r. t. ITRF2014
 - Refined AC-specific estimates agree with scale of IGS repro3 solutions within same level

→ Contribution to ITRF2020 scale?
Thank you very much for your attention.

susanne.glaser@gfz-potsdam.de

paul.rebischung@ign.fr
Model fit – periodograms: CODE

- grey: average periodograms of residuals from complete deterministic models
- red: white + flicker noise fit
- black: average periodograms of residuals from piecewise linear models
Model fit – periodograms: ESA

- black: average periodograms of residuals from piecewise linear models
- grey: average periodograms of residuals from complete deterministic models
- red: white + flicker noise fit
Model fit – periodograms: GFZ, GRGS

GFZ

GRGS
Appendix

Free vs. constrained scale

Free scale

- Unreliable scale trends which differ a lot among ACs
- Reasons:
 - Remaining trends in z-PCOs?
 - 3.6 yr Galileo too short for 20 yr time span?

Example: ESA

Glaser et al.,
Rigorous propagation of Galileo-based terrestrial scale
Free vs. constrained scale

Constrained scale

- Additional assumption: no-net-rate constraint over selected subset of GPS z-PCOs
- Shortcoming? In case of actual non-zero average trend → propagation of these trends into scale

Example: ESA
Appendix

Scale factors w. r. t. IGSR3

CODE

ESA

Glaser et al.,
Rigorous propagation of Galileo-based terrestrial scale
Appendix

Scale factors w. r. t. IGSR3

GFZ

GRGS

Glaser et al.,
Rigorous propagation of Galileo-based terrestrial scale

Tour de l'IGS 02/06/2021 7 / 7