Rigorous propagation of Galileo-based terrestrial scale

Susanne Glaser¹, Paul Rebischung^{2,3}, Zuheir Altamimi^{2,3}, Harald Schuh^{1,4}

¹GFZ German Research Centre for Geosciences, Potsdam, Germany ²Université de Paris, Institut de physique du globe de Paris, CNRS, IGN, Paris, France ³ENSG-Géomatique, IGN, Marne-la-Vallée, France ⁴Technische Universität Berlin, Chair of Satellite Geodesy, Berlin, Germany

> **Tour de l'IGS** Technical Mini-Workshop Series June 02, 2021

> > HELMH

Outline

Introduction

- Background
- Motivation
- 2 Method
 - Data
 - Preliminary step
 - Model fit
 - Back-substitution

3 Results

- Scale factors w. r. t. IGSR3
- Scale factors w.r.t. ITRF2014

4 Conclusions

Summary and outlook

Introduction	Method	Results	Conclusions
000	0000000	0000	0
Outline			

Introduction	Method		Conclusions
000	000000	0000	
Rigorous propagation of	Galileo-based terrestria	al scale – Background	

Scale of previous ITRF solutions

• So far available GNSS satellite phase center offsets (PCOs) estimated with fixed ITRF scale, and depend conventionally on SLR and VLBI scale

Introduction	Method		Conclusions
000	000000	0000	
Rigorous propagation of	Galileo-based terrestria	al scale – Background	

Scale of previous ITRF solutions

- So far available GNSS satellite phase center offsets (PCOs) estimated with fixed ITRF scale, and depend conventionally on SLR and VLBI scale
- $\rightarrow\,$ No independent scale realization possible by GNSS

Introduction	Method	Results	Conclusions
Rigorous propagation of	Galileo-based terrestri	al scale – Background	

Scale of previous ITRF solutions

- So far available GNSS satellite phase center offsets (PCOs) estimated with fixed ITRF scale, and depend conventionally on SLR and VLBI scale
- $\rightarrow\,$ No independent scale realization possible by GNSS

Unique opportunity

- European GNSS Agency disclosed metadata including z-PCOs for Galileo satellites
- \rightarrow Realize independent scale in multi-GNSS solutions and possibly contribute to ITRF2020 scale

ntroduction	Method	Conclusions
000		

Shortcoming of igsR3.atx z-PCOs

Preliminary work

- A single correction to all igs14.atx GPS z-PCOs was estimated (same for GLONASS) based on preliminary multi-GNSS solutions for the period 2017-2018.
- Like in all other ANTEX files, satellite z-PCOs are constant (except for R730 & R737), with no uncertainties available.

Preliminary work

Shortcoming of igsR3.atx z-PCOs

- A single correction to all igs14.atx GPS z-PCOs was estimated (same for GLONASS) based on preliminary multi-GNSS solutions for the period 2017-2018.
- Like in all other ANTEX files, satellite z-PCOs are constant (except for R730 & R737), with no uncertainties available.
- $\rightarrow\,$ No constraining with appropriate weighting possible (satellite z-PCOs fixed in repro3 solutions).

Introduction	Method		Conclusions
000			
Rigorous propagation of	Galileo-based terrestria	al scale	

New approach in this study

Introduction ○○●	Method 0000000		Results 0000		Conclusions 0
D'		1			

Rigorous propagation of Galileo-based terrestrial scale

New approach in this study

- Fit deterministic and stochastic model to time series of GPS/GLONASS z-PCO estimates of repro3 AC solutions
- Derive piecewise linear models of z-PCOs

Introduction	Method	Results	Conclusions
	0000000	0000	O
ר.			

Rigorous propagation of Galileo-based terrestrial scale

New approach in this study

- Fit deterministic and stochastic model to time series of GPS/GLONASS z-PCO estimates of repro3 AC solutions
- Derive piecewise linear models of z-PCOs
- ightarrow Introduce time-variable z-PCOs with realistic uncertainties for scale estimation

	Method	Results	Conclusions
	೦೦೦೦೦೦	0000	O
Outline			

	Method	Conclusions
	000000	
Data		

IGS repro3 SINEX solutions of four ACs

- CODE (Center for Orbit Determination in Europe): 1994-01-02 to 2019-12-31
 - From 2002-01-01 GLONASS; From 2013-01-01 Galileo
- ESA (European Space Agency): 1995-01-01 to 2020-12-31
 - From 2009-01-01 GLONASS; From 2015-01-01 Galileo
- GFZ (GeoForschungsZentrum): 1994-01-02 to 2020-12-31
 - From 2012-01-01 GLONASS; From 2013-12-21 Galileo
- GRGS (Groupe de Recherche en Géodésie Spatiale): 2000-05-03 to 2020-12-31
 - From 2008-11-04 GLONASS; From 2016-12-31 Galileo

[IGSMAIL-8026]

	Method		Conclusions
	000000		
Preliminary step:	When does Galileo-based se	cale become precise and stable enoug	gh?

	Method	Conclusions
	000000	
B 11 1		

Preliminary step: When does Galileo-based scale become precise and stable enough?

CODE

GFZ

2921 2020

GPS+GLONASS z-PCOs fixed

ileo z.PCOs fixed

2017 2018 2019

	Method	Conclusions
	000000	
7-PCO time series		

Determination of time series of GPS+GLONASS satellite z-PCO estimates

Introduction	Method	Results	Conclusions O
z-PCO time series			

Determination of time series of GPS+GLONASS satellite z-PCO estimates

- After May 2017
 - Fix Galileo satellite z-PCOs (except for E102)
- Before May 2017
 - "no-net-translation" constraints of selected GPS and GLONASS satellite z-PCOs w.r.t. igsR3.atx

Method	Conclusions
000000	

Determination of time series of GPS+GLONASS satellite z-PCO estimates

• After May 2017

z-PCO time series

- Fix Galileo satellite z-PCOs (except for E102)
- Before May 2017
 - "no-net-translation" constraints of selected GPS and GLONASS satellite z-PCOs w.r.t. igsR3.atx
- Initial screening procedure: elimination of data before 1997, data with large formal errors, short time spans

 \rightarrow Diverse features: periodicities, offsets, outliers, slow non-linear variations

	Method	Results	Conclusions
	○○○○●○○	0000	O
Eit deterministic and	l stachastic model	$a + a = A = B = C \cap a$	

Fit deterministic and stochastic models to all z-PCOs

Initial model: Single linear trend + variable white noise

Then: Iterative model refinement by adding more deterministic and noise components

Initial model: Single linear trend + variable white noise

Then: Iterative model refinement by adding more deterministic and noise components

Example ESA AC R730 – Fit after 33 iterations

Glaser et al., Rigorous propagation of Galileo-based terrestrial scale

Introduction 000 Method

Resul

Conclusions

Model fit – periodogram: GFZ

- grey: average periodograms of residuals from complete deterministic models
- red: white + flicker noise fit
- black: average periodograms of residuals from piecewise linear models

Glaser et al., Rigorous propagation of Galileo-based terrestrial scale

	Method	Conclusions
	000000	
Back-substitution		

	Method	Conclusions
	000000	
Rack substitution		
DACK-SUDSLILUTION		

Long-term stacking of GPS+GLONASS z-PCO time series

• Estimation of daily "transformation parameter" before May 2017 to remove initial "no-net-translation" constraint and get piecewise linear z-PCO models independent from igsR3.atx, with realistic uncertainties

Back-substitution

Long-term stacking of GPS+GLONASS z-PCO time series

- Estimation of daily "transformation parameter" before May 2017 to remove initial "no-net-translation" constraint and get piecewise linear z-PCO models independent from igsR3.atx, with realistic uncertainties
- New piecewise linear z-PCO models are then back-substituted into the daily AC SINEX solutions, and their scale is compared to that of the IGSR3 reference frame

Back-substitution

Long-term stacking of GPS+GLONASS z-PCO time series

- Estimation of daily "transformation parameter" before May 2017 to remove initial "no-net-translation" constraint and get piecewise linear z-PCO models independent from igsR3.atx, with realistic uncertainties
- New piecewise linear z-PCO models are then back-substituted into the daily AC SINEX solutions, and their scale is compared to that of the IGSR3 reference frame
- ightarrow Result: Galileo-based scale independent of igsR3.atx (and SLR/VLBI)

	Method	Results	Conclusions
	0000000	0000	0
Outline			

- Scale factors w.r.t. IGSR3
- Scale factors w.r.t. ITRF2014

4 Conclusions

Introduction 000 Method

Results ●000 Conclusions

Scale fit w.r.t. IGSR3, Example: GFZ

Introduction	Method	Results ○●○○	Conclusions
Scale factors w.r.t. IGS	SR3		

IGSR3 reference frame - repro3 solution based on igsR3.atx file

Mean scale offsets at epoch 2010.0 and scale rates w.r.t. IGSR3				
		scale offset	scale rate	
	AC	@2010.0 [mm]	[mm/yr]	
	cod	-0.1 +/- 0.7	0.04 +/- 0.05	
	esa	0.8 +/- 0.8	0.06 +/- 0.07	
	gfz	0.5 +/- 0.9	-0.04 +/- 0.07	
	grg	-0.1 +/- 0.8	0.01 +/- 0.07	

ntroc		/lethod 0000000	Results ○○●○	Conclusions O
Sc	ale factors w.r.t. ITR	-2014		
	Mean scale offsets at epoch	2010.0 and scale rate	s w.r.t. ITRF2014	
		scale offset	scale rate	
	AC	@2010.0 [mm]	[mm/yr]	
	IGS re	oro 3 7.6 +/- 0.2	0.20 +/- 0.02	
	cod	7.8 +/- 0.7	0.23 +/- 0.05	
	esa	8.7 +/- 0.8	0.25 +/- 0.07	
	gfz	8.4 +/- 0.9	0.15 +/- 0.07	
	grg	7.8 +/- 0.8	0.20 +/- 0.07	

 \rightarrow 4 ACs agree within 1 mm for scale offset; 0.1 mm/yr for scale rate

grg

Introduction	Method	Results	Conclusions
000	0000000	○○●	O
Scale factors w.r.t.	ITRF2014		

	Method	Results	Conclusions
	0000000	0000	O
Outline			

Introduction	Method	Results	Conclusions
			•
Conclusions			

	Method	Conclusions
		•
Conclusions		

 Piecewise linear models of GPS and GLONASS z-PCOs (vs. igsR3.atx with constant z-PCOs)

	Method	Conclusions
		•
Conclusions		
CONCIUSIONS		

- Piecewise linear models of GPS and GLONASS z-PCOs (vs. igsR3.atx with constant z-PCOs)
- \bullet Back-substitution to repro3 solutions \rightarrow refined Galileo-based scale:

	Method	Conclusions	
	0000000	•	
Conclusions			

- Piecewise linear models of GPS and GLONASS z-PCOs (vs. igsR3.atx with constant z-PCOs)
- \bullet Back-substitution to repro3 solutions \rightarrow refined Galileo-based scale:
 - Differences to igsR3.atx-based scale are essentially linear
 - 4 ACs (CODE, ESA, GFZ, GRGS) agree within 1 mm for scale offset; 0.1 mm/yr for scale rate w.r.t. ITRF2014
 - Refined AC-specific estimates agree with scale of IGS repro3 solutions within same level

	Method	Conclusions	
	0000000	•	
Conclusions			

- Piecewise linear models of GPS and GLONASS z-PCOs (vs. igsR3.atx with constant z-PCOs)
- \bullet Back-substitution to repro3 solutions \rightarrow refined Galileo-based scale:
 - Differences to igsR3.atx-based scale are essentially linear
 - 4 ACs (CODE, ESA, GFZ, GRGS) agree within 1 mm for scale offset; 0.1 mm/yr for scale rate w.r.t. ITRF2014
 - Refined AC-specific estimates agree with scale of IGS repro3 solutions within same level

\rightarrow Contribution to ITRF2020 scale?

Thank you very much for your attention.

susanne.glaser@gfz-potsdam.de

paul.rebischung@ign.fr

Model fit – periodograms: CODE

- grey: average periodograms of residuals from complete deterministic models
- red: white + flicker noise fit
- black: average periodograms of residuals from piecewise linear models

Glaser et al., Rigorous propagation of Galileo-based terrestrial scale

Model fit - periodograms: ESA

- black: average periodograms of residuals from piecewise linear models
- grey: average periodograms of residuals from complete deterministic models
- red: white + flicker noise fit

Glaser et al., Rigorous propagation of Galileo-based terrestrial scale

Model fit – periodograms: GFZ, GRGS

Glaser et al., Rigorous propagation of Galileo-based terrestrial scale

Free vs. constrained scale

Free scale

- Unreliable scale trends which differ a lot among ACs
- Reasons:
 - Remaining trends in z-PCOs?
 - 3.6 yr Galileo too short for 20 yr time span?

Glaser et al., Rigorous propagation of Galileo-based terrestrial scale

Free vs. constrained scale

Constrained scale

- Additional assumption: no-net-rate constraint over selected subset of GPS z-PCOs
- Shortcoming? In case of actual non-zero average trend → propagation of these trends into scale

Glaser et al., Rigorous propagation of Galileo-based terrestrial scale

Appendix 00●0

Scale factors w.r.t. IGSR3

CODE IGSR3 [mm] ţ scale -15 full time series power-law noise - 10 deterministic model variable white noise - 15 stochastic annual component - 5 -20 2888 2665 2010 2815 2020 102 101 [mr^2/cpy] 160 10-S 10-2 nb-Scargle periodogram of "full time series 10 Theoretical power spectrum of noise model 10-1 100 101 frequency [cpv]

ESA

Glaser et al., Rigorous propagation of Galileo-based terrestrial scale

Scale factors w.r.t. IGSR3

GRGS

Glaser et al., Rigorous propagation of Galileo-based terrestrial scale