

Pride ckcom: Repro3 clock combination

Jianghui GENG, Shuyin MAO, Yuanxin PAN

GNSS Research Center, Wuhan University, China

Tour de l'IGS 2 June 202 I Online mini-Workshop

GNSS Research Center Wuhan University

Why combine satellite clocks/phase biases?

- IGS combines ACs' orbits
 - IGSI:AC-specific weighting for GPS/GLONASS/Galileo combination
 - IGS2: Satellite-specific weighting for GPS/GLONASS/Galileo combination
- Combining satellite clocks/phase biases to agree with orbits
 - Satellite attitude quaternions as new products to improve clock consistency

AC	Orbits/clocks	Phase biases	Quaternions
COD	GRE	GE	GRE
ESA	GRE	n/a	n/a
EMR	G	G	G
GRG	GRE	GE	GRE
JPL	G	n/a	G
TUG	GRE	GRE	GRE

Combine clock/bias products to achieve improved PPP (Banville et al. 2020)

Banville et al. (2020) On the interoperability of IGS products for precise point positioning with ambiguity resolution. JoG

Combination method

Impact of satellite attitude corrections

Quaternions diminish inter-AC clock discrepancies in eclipsing seasons

2021

Online

PRIDE Lab

IGS1 vs. IGS2 based clock combinations

- IGSI-IGS2: combination clock differences (ps) in w2010
 - Clock combination strateiges follow those of the orbit combinations

PRIDELab

The difference between IGS1 and IGS2 based combination clocks is minimal

Legacy satellite clock combination

--GPS/Galileo clocks computed without undifferenced ambiguity resolution

漢大學 Slide

GPS legacy satellite clock consistency

• AC-specific clocks compared to combined clocks (IGS2 orbits)

GPS clock consistency improves thanks to the orbit improvement

Online 2021

Galileo legacy satellite clock consistency

• AC-specific clocks compared to combined clocks (IGS2 orbits)

6.9ps mean (w2010 Galileo 4 ACs)

00

Ambiguity-float daily GPS

- w1062 GPS with IGS2 orbits
 - No quaternions were used in PPP to facilitate cross-comparison

Legacy satellite clock combination

--Issues with GLONASS clocks and solutions

GLONASS satellite clock consistency

• AC-specific clocks compared to combined clocks (IGS2 orbits)

Slide

活

PRIDELab

GLONASS orbit/clock consistency among ACs

• Day 196 of 2018: orbits/clocks compared to their combinations

GLONASS along/cross-track orbit discrepancy harms the clock combination

GLONASS impact on daily solutions

- All ACs were used for GLONASS clock combination (w2010)
 - GPS clocks were also screened for outlier satellites

mm (E/N/U)	Raw	>50ps removed	>150ps removed
G	3.3/1.8/6.3	3.3/1.8/6.3	3.3/1.8/6.3
GR	3.3/1.7/5.9	3.1/1.6/5.9	3.2/1.6/5.8

Raw: use all GLONASS satellites

>50ps: remove satellites with >50ps clock RMSE

>150ps: remove satellites with >150ps clock RMSE

GLONASS impact on kinematic solutions

- SEYG kinematic solutions by GPS/GLONASS
 - Remove GLO. satellites with large clock combination residuals

Integer satellite clock combination

----GPS/Galileo clocks computed with undifferenced ambiguity resolution

GPS integer satellite clock consistency

• AC-specific clocks compared to combined clocks (IGS2 orbits)

2021 Online

PRIDELab

Galileo integer satellite clock consistency

• AC-specific clocks compared to combined clocks (IGS2 orbits)

 \sim

Slide

泽

PRIDELab

Ambiguity fixing rates

w2010 GPS/Galileo fixing rates

202 Online

Ambiguity-fixed daily GPS

- w2010 GPS with IGS2 orbits
 - No quaternions were used in PPP to facilitate cross-comparison

Ambiguity-fixed daily GPS/Galileo

- w2010 GPS/Galileo with IGS2 orbits
 - No quaternions were used in PPP to facilitate cross-comparison

Summarized results

- Orbit/clock/bias consistency
- Daily positioning precision

	Orbit A/C/R RMSE from combined orbits IGS2 (cm)			Clock RMSE from combined clocks (ps)			Daily E/N/U positioning precision (mm)		
	GPS	Gal.	GLO.	GPS	Gal.	GLO.	GPS	GPS/GLO.	GPS/Gal.
w1062-f	2.3/1.7/1.6	n/a	n/a	14.2	n/a	n/a	3.5/2.8/7.9	n/a	n/a
w1062-x				16.6	n/a	n/a	2.4/2.6/7.6	n/a	n/a
w2010-f	1.0/0.8/0.8	1.3/0.9/2.1	3.0/2.5/1.6	6.0	6.9	68.9	3.3/1.9/6.1	3.3/1.7/5.9	2.8/1.8/6.3
w2010-x				4.8	5.4	n/a	1.5/1.6/5.3	n/a	1.4/1.6/5.8

202

Online

PRIDELab

Integer clock consistency outperforms legacy clock consistency

- The new IGS quaternion product should be applied to improve clock consistency among ACs
- Inter-AC satellite legacy clock consistency is around 6 ps for GPS/Galileo
- Inter-AC satellite integer clock consistency is improved by about 20% to 5 ps after combining legacy clock with phase biases for GPS/Galileo
- GLONASS clock combination can still be useful if a qaulity control based on clock consistency is applied

Thank you!

Jianghui GENG

pride.whu.edu.cn

jgeng@whu.edu.cn

14

2021

Online

Ambiguity-float daily GPS

• w2010 GPS with IGS2 orbits

Ambiguity-float daily GPS/Galileo

• w2010 GPS/Galileo with IGS2 orbits

Slide 26

潘