

Repro3 PPP-AR Products

BY SIMON BANVILLE, PPP-AR WORKING GROUP CHAIR, NRCAN PRESENTED AT THE TOUR DE L'IGS WORKSHOP, 2 JUNE 2021

- Several analysis centers (ACs) now provide code and phase biases allowing for precise point positioning with ambiguity resolution (PPP-AR)
- The PPP-AR working group was created to test the inter-operability of PPP-AR products from ACs and generate combined products
- Repro3 is the perfect framework to test the combination over an extended period of time

IGS

Satellite clock combination (current)

Satellite clock combination (proposed)

> The consistency of clocks and biases needs to be preserved to achieve PPP-AR at the user end

See: Banville et al. (2020) On the interoperability of IGS products for precise point positioning with ambiguity resolution. Journal of Geodesy

Bias SINEX format

Biases are (should) be provided in the Bias SINEX format (.BIA)

See: Schaer S (2016) Bias-SINEX format and implications for IGS bias products. In: IGS Workshop, 8–12 February, Sydney, Australia

*BIAS	SVN	PRN	STATION	0BS1	0BS2	BIAS	START	BIAS END	UNIT	ESTIMATED_VALUE	STD DEV	ESTIMATED	SLOPE	STD DEV
0SB	_ (G01		C1W		2020	:001:00000	2020:002:00000	ns	11.8070				
0SB	(G01		C2W		2020	:001:00000	2020:002:00000	ns	19.4455				
0SB	(G01		C1C		2020	:001:00000	2020:002:00000	ns	10.5799				
0SB		G01		L1W		2020	:001:00000	2020:002:00000	ns	-0.1678				
0SB	(G01		L2W		2020	:001:00000	2020:002:00000	ns	0.0401				
0SB	(G02		C1W		2020	:001:00000	2020:002:00000	ns	-11.7467				
0SB	(G02		C2W		2020	:001:00000	2020:002:00000	ns	-19.3462				
0SB		G02		C1C		2020	:001:00000	2020:002:00000	ns	-10.1931				
0SB	(G02		L1W		2020	:001:00000	2020:002:00000	ns	0.2190				
0SB	. (G02		L2W		2020	:001:00000	2020:002:00000	ns	0.0578				

Users apply these biases directly to the observations

These biases remain valid for linear combinations of observations

Satellite attitude

Satellite attitude in the form of quaternions in the ORBEX format (.OBX)

See: Loyer et al. (2019a) GNSS Attitude quaternions exchange using ORBEX, version 30/04/2019. Available online: http://acc.igs.org/misc/proposal_orbex_april2019.pdf

+EPHEMERIS/DATA				
*REC ID_	Nq0_(scalar)	q1x	q2y	q3z
## 2020 1 1 0 0	0.00000000000 31			
ATT G01	4 0.0527183285603730	0.2354348638796859	-0.4049814903282852	-0.8819190411796513
ATT G02	4 0.5095354860666030	0.1753306274361990	-0.6131697981550162	0.5776292566622957
ATT G03	4 0.1286686244066377	0.0130622269512094	-0.3287540152701171	-0.9355183380159656
ATT G05	4 0.3955116258638559	0.0075529415144335	-0.9103275344548667	0.1217262785693066
ATT G06	4 0.1587035961776324	0.4297700120219956	-0.1290208857212101	0.8794683145938887
ATT G07	4 0.1622095453857573	0.0677779940634163	-0.9497403402990026	-0.2590125342820696
ATT G08	4 0.0274901071929424	-0.2276582920960294	0.8458083421237554	0.4816889498839512
ATT G09	4 0.2249761199695971	0.0726848200148178	-0.7680223252617401	-0.5951843162268213

Reference attitude provided by GROOPS

All attitude models have been implemented in TUG's open-source software GROOPS. The C++ source code, documentation, and an overview of model parameters are available on GitHub (<u>https://github.com/groops-devs/groops</u>). A dataset containing test output for all models is also available. See: Strasser et al. (2021) Comparison and generalization of GNSS satellite attitude models. EGU 2021

Satellite attitude

Issues when combining satellite clocks of eclipsing satellites

- Satellite G25 (in red) in a GPS IIF satellite observed at a beta angle ~0 degree
- IIF satellites are know to make unpredictable turns in this context
- Analysis centers model these turns differently which, due to the carrier windup effect, cause discrepancies in the satellite clock estimates

From: Loyer et al. (2021) Exchanging satellite attitude quaternions for improved GNSS data processing consistency. Advances in Space Research

Satellite attitude

Issues when combining satellite clocks of eclipsing satellites

- Exchanging satellite attitude among analysis centers allows mitigating the inconsistencies previously observed
- Remaining effects are due to satellite phase center offsets propagating into clock estimates when the satellite is not oriented correctly

From: Loyer et al. (2021) Exchanging satellite attitude quaternions for improved GNSS data processing consistency. Advances in Space Research

Repro3 clock/attitude availability

AC product code	Constellations	Clock interval (sec)	Attitude interval (sec)
COD	GRE	30	900
EMR/NGS	G	30	30
ESA	GRE	30	None
GFZ	GRE	300	300
GRG	GRE	30	30
JPL	G	30	30
MIT	GE	300	None
TUG	GRE	30	30
WHU	GR	300	300

Repro3 phase-bias availability

AC		GPS		GLONASS		Galileo					
product code	L1	L2	L5	L1	L2	L1	L5	L6	L7	L8	
COD	2000-124					2014-001					
EMR/NGS	2000)-001									
ESA											
GFZ											
GRG	2000)-124				2017	7-001				
JPL											
MIT											
TUG	1994	1-001	2010-240	2009	2009-001		2013-001		2013-001		
WHU											
	Date at which at least 3 analysis centers are contributing							ing			

Example: satellite clock/bias combination

- GPS week 2010 (2018-196 to 2018-202)
- Constellations: GPS, GLONASS, Galileo
- Analysis centers: COD, EMR/NGS, ESA, GRG, JPL, TUG
- Combined orbits: solution IGS1
- Reference attitude: GROOPS
- > PPP solutions from 100 globally distributed stations using the NRCan PPP software
- Reference station positions from SINEX combined solution

Example: widelane biases

Example: clock combination residuals

- All analysis centers contribute to the clock combination, even if they don't provide phase biases
- The integer properties of the combined clock comes from analysis centers with phase biases

Example: PPP results, 24-h static

- Based on 700 PPP solutions (7 days / 100 stations)
- G: GPS
- R: GLONASS
- E: Galileo
- Lowercase: float ambiguities
- Uppercase: fixed ambiguities (PPP-AR)
- Not full Galileo constellation (~20 satellites)
- Lowest RMS error is the multi-GNSS solution with ambiguity resolution (!)

Summary

- Phase biases enabling PPP-AR could be generated:
 - GPS: starting 2000-124 (selective availability deactivated)
 - Galileo: starting 2017-001
- Proof of concept: integer clocks for GPS and Galileo allow for PPP-AR and improved accuracy
- More work needed to determine how to incorporate GLONASS satellite clocks into the combined products

Call for participation

Anyone willing to contribute time/expertise/CPU to help the IGS PPP-AR WG can contact me

- Investigate GLONASS clock combination strategies and measure their impact on PPP
- Running GROOPS to generate reference attitude from 1994-2020
- Running PPP-AR tests to verify the validity of the combined orbits/clocks
- ► Etc.

- - IGS

Thank You

CONTACT: WG CHAIR: SIMON BANVILLE SIMON.BANVILLE@CANADA.CA