

Terrestrial frame solutions from the third IGS reprocessing: the IGS contribution to ITRF2020

Paul Rebischung

based on contributions from:

- COD Centre for Orbit Determination in Europe, Bern, Switzerland
- ESA European Space Agency, Darmstadt, Germany
- GFZ Geoforschungszentrum, Potsdam, Germany
- GRG Groupe de Recherche en Géodésie Spatiale, Toulouse, France ULR
- JPL Jet Propulsion Laboratory, Pasadena, California, USA

- MIT Massachusetts Institute of Technology, Cambridge, Mass., USA
- NGS National Geodetic Survey, Silver Springs, Maryland, USA
- TUG Graz University of Technology, Graz, Austria
 - R Université de la Rochelle, la Rochelle, France
- WHU Wuhan University, Wuhan, Hubei, China

The third IGS reprocessing campaign (repro3)

- Re-analysis of the data collected by a global GNSS network over the period 1994-2020 using the latest available models and methodology by ten IGS Analysis Centers (ACs)
- Main purpose: provide the IGS input to ITRF2020
- Main updates since repro2:
 - Galileo & GLONASS observations processed by a majority of ACs
 - New multi-GNSS calibrations for several ground antenna types (from Geo++)
 - Re-evaluated GPS & GLONASS satellite z-PCOs based on Galileo satellite z-PCOs published by GSA
 - ightarrow For the first time, IGS repro3 solutions have an ITRF-independent, Galileo-based terrestrial scale.
 - Ground antenna calibrations rotated to match actual antenna orientations
 - New IERS secular pole model
 - Sub-daily EOP tide model from Desai & Sibois (2016)
 - Modern ocean tide loading models
 - Improved solar radiation pressure models
 - Time-variable gravity field models
- More details in [IGSMAIL-8026]: <u>https://lists.igs.org/pipermail/igsmail/2021/008022.html</u>

repro3-specific

ANTEX file

« igsR3.atx »

AC contributions to repro3

	<u>َ</u> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
COD	
ESA	
GFZ	
GRG	
JPL	
МІТ	
NGS	
TUG	
ULR	
WHU	

GPS

GPS+GLONASS+Galileo

Part 1:

Daily repro3 SINEX combinations

• The daily terrestrial frame (SINEX) solutions provided by the different ACs were combined.

- Similar combination strategy as for repro2 (Rebischung et al., 2016) with some minor adjustments
- Daily combined solutions aligned in origin & orientation to repro3-specific reference frame « IGSR3 »
- Scale inherited from Galileo-based igsR3.atx satellite z-PCOs
- SINEX combination products publicly released on April 10, 2021 at <u>ftp://igs-rf.ign.fr/pub/repro3</u>, now also available at CDDIS
- More details in [IGSMAIL-8026]: <u>https://lists.igs.org/pipermail/igsmail/2021/008022.html</u>
- Daily combined repro3 SINEX solutions = IGS input to ITRF2020
- The following slides show results from the daily repro3 SINEX combinations.

repro3 station network

Number of stations in daily AC & combined solutions

Daily median formal errors of station positions

- The displayed median formal errors are those in the daily AC solutions after they have been optimally weighted for the combination.
- They reflect the level of agreement between daily AC solutions and are a proxy for the AC weights in the daily combinations.

Smoothed daily median formal errors of station positions

- The displayed median formal errors are those in the daily AC solutions after they have been optimally weighted for the combination.
- They reflect the level of agreement between daily AC solutions and are a proxy for the AC weights in the daily combinations.

Example of station position residuals – STJO (St. John's, Canada)

— cod	(1.3 mm)	— j	jpl (1.2	mm) ——	tug (0.	5 mm)
— esa	(0.9 mm)	— m	nit (0.9	mm) ——	ulr (1.	1 mm)
— gfz	(0.9 mm)	— n	ngs (1.5	mm) —	whu (0.	8 mm)
— grg	(0.9 mm)					

- Numbers in the legends are WRMS of the station position residual time series.

Example of station position residuals – CAS1 (Casey, Antarctica)

- Note inter-AC biases in Up, which change with 2008-12-03 receiver change and 2013-12-11 antenna change.

Average periodograms of station position residuals – North

cod esa

qfz

grg

jpl

mit

ngs

tuq

ulr

whu

- Only post-2001 residuals were used.
- Only residual time series with at least 700 daily points were used.
- A series of length T only contributes to frequencies > 1/T of the averaged periodogram.
- Similar pictures in East and Up
- Similar picture as in repro2, except for new clusters of GLONASS-related spectral peaks around 8 d and harmonics
- Note that these peaks are larger for ACs who do not use or downweight GLONASS (GRG, MIT, NGS, ULR).
- Interpretation of combination residuals complicated by the fact that AC solutions are compared to their weighted mean.
- Comparative study of 'absolute' errors in AC repro3 station position time series will follow.

X-pole rate residuals

Numbers in the legend are WRMS of the X-pole rate residual time series. Spectra were computed from post-2001 residuals only.

X-pole rate (and other ERP) residuals

- Large fortnightly peaks + clusters of peaks around ~9 d, ~7 d, ~5.7 d and ~4.7 d in GFZ and NGS pole rate residuals
- Errors in implementing new sub-daily EOP tide model?
- Otherwise similar picture as in repro2; for other ERPs as well
- Overall inter-AC agreement on ERPs however noticeably improved from repro2 to repro3:

EDD	overall WRMS of AC residuals			
ENP	in repro2	in repro3		
X-pole	25.8 µas	19.9 µas		
Y-pole	24.8 µas	17.7 µas		
X-pole rate	122 µas/d	98 µas/d		
Y-pole rate	129 µas/d	110 µas/d		
LOD	6.6 µs	5.2 μs		

Combined geocenter coordinates (in IGSR3 reference frame)

Scale of daily combined solutions

Scale factor time series modeled as the sum of:

- linear trend + annual, semi-annual, draconitic
 & semi-draconitic sine waves;
- power-law noise;
- variable white noise
- Estimated linear trend wrt IGSR3:

 - 0.00 +/- 0.02 mm/yr
- Estimated linear trend wrt ITRF2014: (obtained by adding the IGSR3/ITRF2014 transformation)
 - +7.6 +/- 0.2 mm @ epoch 2010.0 🔊
 - +0.19 +/- 0.02 mm/yr

controlled by Galileo satellite z-PCOs

controlled by the assumption of constant (GPS) satellite z-PCOs

Also note excellent inter-AC agreement on scale (< 1 mm ; < 0.1 mm/yr)

Part 2:

Comparison of station position time series

• Station position time series from five sources are compared:

- 'ig3' IGS repro3 combined solutions
- 'tug' TU Graz contribution to IGS repro3 (as the 'best' contributing AC)
- 'ig2' IGS repro2 / operational solutions
- 'jpl' JPL PPP time series
- 'ngl' NGL PPP time series

- (https://sideshow.jpl.nasa.gov/post/series.html; Heflin et al., 2020) (http://geodesy.unr.edu; Blewitt et al., 2018)
- For each station among a selection of 215 IGSR3 stations:
 - Remove IGSR3 post-seismic deformation model from the five time series, when applicable
 - Adjust the same {piecewise linear + annual & semi-annual sine waves} model to the five time series
 - Discontinuity dates taken from IGSR3 discontinuity list + a few additions
 - Exception: additional discontinuity on 2017-01-29 (date of IGb08 → IGS14 switch) for all 'ig2' series
- Compare the residuals from the five series of adjustments, their WRMS and averaged spectra

Example: CHTI (Chatham Island, New Zealand)

Numbers in the legends are WRMS of the residual time series.

Relative WRMS differences

Smoothed averaged periodograms

Smoothed averaged spectral amplitude differences (North)

٠

٠

- Background noise smallest in 'ig3'; largest in 'jpl' and 'ngl' PPP series
- Periodic errors also generally smallest in 'ig3'
 - Except for GLONASS-related ~8 d signals, which are obviously absent from GPS-only series
 - Draconitic and fortnightly errors in particular reduced from 'ig2' to 'ig3'
- Similar pictures in East and Up

Summary

• Daily repro3 SINEX combinations:

- Inter-AC agreement on station positions at similar level as in repro2
- No more ACs on the tail of the peloton, but a new frontrunner (TU Graz)
- Draconitic & fortnightly signals still obviously present in station position residuals, with now additional GLONASS-related signals at harmonics of ~8 d
- Inter-AC agreement on ERPs noticeably improved compared to repro2
- Draconitic and fortnightly signals still obviously present in ERP residuals
- Clusters of spectral peaks around ~9 d, ~7 d, ~5.7 d and ~4.7 d in GFZ and NGS pole rate residuals (?)
- Inter-AC agreement on terrestrial scale at the level of +/- 1 mm
- (ITRF-independent, Galileo-based) scale of combined repro3 solutions extremely precise and stable
- ightarrow Possible contribution of GNSS to the definition of the ITRF2020 scale?
- Comparison of station position time series:
 - Average (non-seasonal) scatter reduction of ~0.12 mm (~8%) in horizontal; ~0.24 mm (~5%) in vertical from repro2 to repro3
 - Background noise, draconitic & fortnightly signals reduced from repro2 to repro3, but new spurious GLONASS-related signals at harmonics of ~8 d present in repro3 series
 - IGS repro3 series unambiguously 'cleaner' than PPP series considered in this comparison, but only marginally compared to TUG series
 - ightarrow To which extent are the improvements from repro2 to repro3 just due to the presence of TUG in repro3?

Next steps

- Currently:
 - Identification of discontinuities in repro3 station position time series
 - Modeling of post-seismic displacements
- Later:
 - Investigate apparent higher precision of TUG solutions
 - Try repro3 combinations without TUG
 - Investigate inter-AC station position biases
 - Extend comparison of station position time series to more stations and all ACs
 - Compare geocenter motion estimates from the different ACs

Thanks for your attention!