



# Benefits of IGS RTS for real time ionospheric space weather monitoring

Ningbo WANG<sup>1,2</sup>, Zishen Ll<sup>1</sup>

<sup>1</sup>Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing <sup>2</sup>IAPG, Technical University of Munich, Munich

E-mail: wangningbo@aoe.ac.cn

29 Oct – 2 Nov, Wuhan, China

- Background and motivation
- Computation of RT-GIMs at CAS (vTEC modeling)
- Validation of RT-GIMs w.r.t different TEC sources
- Conclusions and future work



- The rapid and final GIMs provided by IGS since 1998 (~20 years)
- The availability of the IGS global and other regional RT data streams, containing multi-frequency and multi-constellation GNSS measurements, is being crucial for real-time ionospheric modeling and monitoring
  - RT code biases (GPS) SSR format standardized in 2011
  - Ionosphere vTEC SSR format proposed since 2013
  - Real-time IONO activities running within IGS/IAG frames
  - Several research groups working on the computation of RT-GIMs
- -> Our targets
- Real-time 2D ionospheric modeling (vTECs) using IGS Real Time Services (RTS)
- Providing reliable RT ionospheric information for ionospheric space weather monitoring and precise GNSS applications



State of the art on RT or NRT ionospheric TEC modeling (as of March, 2018)

| Institutions | Methodology                      | Format                   | Latency        |
|--------------|----------------------------------|--------------------------|----------------|
| UPC-IonSAT   | 4D iono. model + interpolation   | RTCM IONO SSR            | RT             |
| CNES         | SH (7*7)                         | RTCM IONO SSR<br>(CLK93) | RT             |
| CAS          | SH (15*15) +<br>prediction model | RTCM IONO SSR<br>(CAS05) | RT             |
| DLR-NZ       | Neustrelitz TEC model<br>(NTCM)  | IONEX                    | RT             |
| DGFI-TUM     | B-splines + Kalman filter        | IONEX                    | NRT, 2-3 hours |
| ROB          | ROB-IONO SW                      | IONEX (European Region)  | RT             |



## RT-GIM generation at CAS (1/6)

- CAS Ionosphere Analysis Center of the IGS
  - Routine generation of rapid (carg) and final (casg) GIMs since 2014
  - New Ionosphere AC (1/7) of the IGS since 02/2016
  - GIM files routinely delivered to CDDIS since 01/2017 (data: 1998-now)
  - Routine RT-GIM generation since 3<sup>rd</sup> quarter of 2017



- Tracking networks IGS +MGEX (> 300 sites)
- Observations GPS(L1+L2), GLONASS(L1+L2), BeiDou(B1+B2 since 2016)
- Global grids ΔLon X ΔLat (5.0 X 2.5) Temporal resolution 1 hour (30 mins since mid-2016)



# RT-GIM generation at CAS (2/6)

- Routine RT GNSS data processing at CAS
  - IGS+MGEX RT data streams (mainly)
  - Local CORS networks in China and South Africa
  - ~110 global sites
  - Supporting GPS+GLO+GAL+BDS systems



## RT-GIM generation at CAS (3/6)

• Generation of RT-GIMs at CAS





Details on global RT IONO vTEC modeling

- RT GNSS measurements (~110 routine sites)
  - GPS (L1+L2), GLO (L1+L2), GAL (E1+E5a), BDS-2 (B1+B2)
  - Code-levelled carrier phase (CLC)
  - Pre-determined satellite & receiver code biases (3-day solution)
- IONO information prediction
  - 2-day SH coefficient prediction using harmonic expansion (Fourier series function)
  - Weighting function designed for IONO information prediction
- Estimation of RT SH coefficient
  - SH function: 15\*15
  - Data sliding window: 15 mins
  - Time resolution: 5 mins



## RT-GIM generation at CAS (5/6)

### RMS of CAS's TEC map at each contributing site (Self-consistency)

CAS's Real-time TEC Error Map 2018-10-27 02:30:00 UT





# RT-GIM generation at CAS (6/6)

RT vTEC SSR broadcasting via Ntrip Caster

Mount point (account required): products.gipp.org.cn/CAS05

RT-GIM files (CRTG) in IONEX format available at CAS's ftp archive ٠

Data/snapshot archives: ftp://ftp.gipp.org.cn/product/ionex/



CAS's Real-time Global TEC Map 2018-10-16 08:00:00 UT

#### Comparison of diff. TEC sources for IONO model performance validation

|                     | GNSS TEC                      | GNSS dsTEC      | Altimetry vTEC       | DORIS dsTEC                   |
|---------------------|-------------------------------|-----------------|----------------------|-------------------------------|
| Obs.                | GF comb.+ CLC                 | GF Comb.+ Phase | GF Comb.             | GF Comb.+ Phase               |
| TEC types           | Absolute (V/S)                | Relative        | Absolute (V)         | Relative                      |
| Data coverage       | Mainly over continents        |                 | Only over oceans     | Globally uniform distribution |
| Assessment<br>types | Self- or external consistency |                 | External consistency | External consistency          |

- GNSS dsTEC assessment: GPS sites of the IGS (60-70, globally arbitrary selected)
- GNSS TEC assessment: IGS final GIMs
- Altimetry vTEC assessment: Jason-3 vTECs
- DORIS dsTEC assessment: DORIS sites of the IDS (14, globally, Jason-3 Phase Meas.)

## RT-GIM validation using IONEX files, but NOT RT SH data stream!



- GNSS and DORIS dsTEC assessment
  - Input data: dual-frequency phase obs.
  - Retrieval of IONO info: geometry-free combination (L4)
  - $L_I(t_k)$  denotes phase derived TEC at epoch  $t_k$
  - L<sub>I</sub>(t<sub>ref</sub>) denotes phase derived TEC with highest satellite elevation of the arc
  - dsTEC is calculated by forming

 $dsTEC(t_k) = L_I(t_k) - L_I(t_{ref})$ 

 Accuracy of dsTEC is much higher than that of the TECs derived from code leveled carrier phase technique



Illustration of dsTEC concept in a continuous

arc of carrier phase observations



## RT-GIM validation at CAS (3/7)

• Performance analysis of RT-GIM (w.r.t GPS dsTECs)



- URTG: RT-GIM of UPC (15 mins)
- CRTG: RT-GIM of CAS (5 mins)
- CASG: final GIM of CAS (30 mins)
- Time period: (to the end of September, 2018)
- Performance improvement of CRTG since early 2018
- Slight worse performance of CRTG compared to the final one
- Std errors of URTG show some periodicities



• Performance analysis of RT-GIM (w.r.t IGS GIM vTECs)



- URTG: RT-GIM of UPC (15 mins)
- CRTG: RT-GIM of CAS (5 mins)
- CASG: final GIM of CAS (30 mins)

- Performance improvement of CRTG since early 2018
- Slight worse performance of CRTG compared to the final one
- Std errors of URTG still show the periodicities



## RT-GIM validation at CAS (5/7)

Performance analysis of RT-GIM (w.r.t Jason-3 vTECs)



- URTG: RT-GIM of UPC (15 mins)
- CRTG: RT-GIM of CAS (5 mins)
- CASG: final GIM of CAS (30 mins)

- Performance improvement of CRTG since early 2018
- Std errors of URTG still larger than CRTG (consistency with assessments relative to GPS dsTECs and IGS GIM TECs)



## RT-GIM validation at CAS (6/7)

• Performance analysis of RT-GIM (w.r.t Jason-3 DORIS dsTECs)



- CRTG: RT-GIM of CAS (5 mins)
- CASG: final GIM of CAS (30 mins)
- IGSG: IGS final GIM (2 hours)

- Performance improvement of CRTG since early 2018 can NOT be identified (site number, distribution, ONLY Jason-3)
- Consistency between CRTG and the final ones



#### Comparison of RT and final GIMs w.r.t diff TEC sources (doy 001-270, 2018)

|                      |      | URTG** | CRTG  | CASG  |
|----------------------|------|--------|-------|-------|
| w.r.t. GPS dsTEC     | Bias | -0.14  | 0.10  | -0.07 |
|                      | Std  | 2.93   | 1.76  | 1.57  |
|                      | Rms  | 3.00   | 1.84  | 1.64  |
| w.r.t. IGS GIM vTEC  | Bias | -1.21  | -0.92 | -1.23 |
|                      | Std  | 3.13   | 1.62  | 0.96  |
|                      | Rms  | 3.42   | 1.86  | 1.56  |
| w.r.t. Jason-3 vTEC* | Bias | 0.81   | 1.00  | 1.20  |
|                      | Std  | 4.49   | 3.38  | 2.60  |
|                      | Rms  | 4.65   | 3.84  | 2.87  |
| w.r.t DORIS dsTEC    | Bias | -      | 0.37  | 0.34  |
| (Jason-3)            | Std  | -      | 2.64  | 2.20  |
|                      | Rms  | -      | 2.69  | 2.26  |

\* Jason-3 TECs only cover DOY 001-079, 2018

\*\* Time period DOY 102-106 is excluded from the statistic



## Conclusions and future work

- Routine RT-GIM generation since 3<sup>rd</sup> quarter of 2017 at CAS
  - CAS's RT vTEC SSR broadcasted via mount point CAS05
  - Updates (bugs fixed) of RT vTEC SSR since October 30, 2018 (many thanks to Manuel from UPC for pointing us the problems)
  - RT-GIM files in IONEX format also available from CAS's ftp archive
- Performance of CRTG routinely assessed w.r.t diff TEC sources (post-processing)
  - Absolute TEC references (2): IGS final GIM + Jason-3 vTECs
  - Relative TEC references (2): GPS dsTEC + DORIS dsTEC
  - Performance improvements of CAS's RT-GIM (CRTG) since early 2018
  - Slight worse of RT-GIM than the final one (smaller bias but larger std)
- In the next step
  - Continuously join the combination of RT-GIMs of the IGS
  - Ionospheric irregularity monitoring products (ROTI, RROT...) at CAS: post-processing mode (finished) -> real-time mode





## **Thanks for your attention**

If any questions, please fell free to contact: wangningbo@aoe.ac.cn / ningbo.wang@tum.de