

FUSING: a distributed software platform

for real-time high precision multi-GNSS service

Shengfeng Gu¹, Fu Zheng², Xiaopeng Gong¹ Yidong Lou¹, Chuang Shi²

1: GNSS Research Center, Wuhan University, 129 Luoyu Road, Wuhan 430079, China 2: School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing 100083, China

November 1, 2018, Wuhan, China

□ Introduction of FUSING

- Features of FUSING
- Products by FUSING
- Conclusions

Challenge: RT GNSS solution with increasing Obs.

Average Combined GNSS visibility over 24 hours (15 Degree Mask)

FUSING: FUSing IN Gnss (复兴)

High reliability

Deploy unified processing mirror on different nodes to realize the task migration of fault node

High scalability

Use collaborative management of calculation, storage node and task to realize intelligent task scheduling

High concurrency

Design decentralization system architecture to realize the task balancing load

- Introduction of FUSING
- □ Features of FUSING
- Products by FUSING
- Conclusions

Features of FUSING

Undifferenced and uncombined observation model

□ Satellites oscillator noise model for GPS, GLONASS, BDS and Galileo Shi C., et al. Multi-GNSS satellite clock estimation constrained with oscillator noise model in the existence of data discontinuity. Journal of Geodesy

D BDS related code bias and inter-frequency clock bias modeling

Gong X., et al. Evaluation and calibration of BeiDou receiver-related pseudorange biases. GPS Solutions Lou Y., et al. Assessment of code bias variations of BDS triple-frequency signals and their impacts on ambiguity resolution for long baselines. *GPS Solutions* Poster 06-05 Gong X., et al.

□ Efficient GNSS network solution based on square root information filter Gong X., et al. An efficient solution of real-time data processing for multi-GNSS network. Journal of Geodesy

□ Real-time filter solution for orbit, clock, atmosphere, etc.

UD UC Observation model based on DESIGN

Undifferenced and uncombined observation model

$$\begin{cases} P_{f}^{s} = \rho^{s} + t^{s} - t_{r} + T^{s} + 40.2/f^{2} \cdot I^{s} + b_{r,f}^{s} + \varepsilon_{P} \\ \Phi_{f}^{s} = \rho^{s} + t^{s} - t_{r} + T^{s} + 40.2/f^{2} \cdot I^{s} - \lambda_{f} \cdot N_{r,f}^{s} + \varepsilon_{\Phi} \end{cases}$$

This algorithm is served as the most basic model in Fusing, e.g, PPP, ionosphere / troposphere delay estimation, BIAS estimation. It is also expected to be applied in precise orbit determination (POD) as well as satellite clock estimation (SCE).

DESIGN-Statistic study of the ionosphere delay

Item	Value						
Stations	~150						
Period	Ionosphere quite	DOY 001-365, 2010					
	Ionosphere active	DOY 001-365, 2014					
Interval	30 second						

Zenith ionospheric delay which is used as samples for the statistic analysis in the following study. e.g., ALGO (top) and KOUR (bottom) on the DOY 091 2010

Deterministic Part of DESIGN: Fourier transform

 $I^{s} = a_{0}(t) + a_{1}(t)dL + a_{2}(t)dL^{2} + a_{3}(t)dB + a_{4}(t)dB^{2} + r(t)$

Power spectrum of different frequency components for a_i based on the Fast Fourier Transform with over 150 stations denoted in different colors for 2010 (left) and 2014 (right)

Identical frequency (fixed)Different amplitude (estimated)

$$a_i(t) = \boldsymbol{\alpha}_0 + \sum_{j=1}^3 \left(\boldsymbol{\beta}_j \cdot sin(2\pi t f_j) + \boldsymbol{\gamma}_j \cdot cos(2\pi t f_j) \right)$$

$2\gamma(\boldsymbol{r}_i, \boldsymbol{r}_j) = var(\boldsymbol{r}_i - \boldsymbol{r}_j)$

For each pair of the ionosphere delay residual (r_i, r_j) with different interval h, the variogram is derived

The spherical model is selected for the parametric semi-variogram $\gamma(r_i, r_j)$

$$\gamma(h) = \begin{cases} c_s((3/2)(h/a_s) - (1/2)(h/a_s)^3), & 0 \le h < a_s \\ c_s, & h \ge a_s \end{cases}$$

a_s: Maximum correlation distance, which is about 9000 s

*c*_s: Corresponding to the constant when the residuals *r* become uncorrelated

 c_s : How to model the variance of c_s ?

Variation of C_s

Varing of c_s against the geomagnetic latitude for 2010 (upper) and 2014 (bottom). The experiment value for different stations is denoted in gray cycle, while the model value is denoted in black line

c_s: Geomagnetic latitude and ionosphere activity status related

Model B variation with Gaussian function $c_s = c_{s,min} + c_{s,max} \cdot e^{-||B| - 15|^2/128}$

Model ionosphere activity with Epstein function

$$\begin{cases} c_{s,min} = 0.5 + (7.5 - 0.5) & \cdot (1/(1 + e^{(s_n - 100)/20})) \\ c_{s,max} = 5.0 + (75.0 - 5.0) & \cdot (1/(1 + e^{(s_n - 100)/20})) \end{cases}$$

s_n: Sun spot number

The above functions can describe the variance of c_s pretty well

Undifferenced and uncombined observation model with ionosphere delay I^s constrained by DESIGN

$$\begin{cases} P_f^s = \rho^s + t^s - t_r + T^s + 40.2/f^2 \cdot I^s &+ \varepsilon_P \\ \Phi_f^s = \rho^s + t^s - t_r + T^s + 40.2/f^2 \cdot I^s - \lambda_f + \varepsilon_\Phi \end{cases} \quad I^s = a_0(t) + a_1(t)dL + a_2(t)dL^2 + a_3(t)dB + a_4(t)dB^2 + r(t)dB^2 + r$$

 a_i expressed as Fourier series with frequency component $f_i \in \begin{pmatrix} 1 & \frac{1}{12} & \frac{1}{8} \end{pmatrix}$

1

$$a_i(t) = \alpha_0 + \sum_{j=1}^3 \left(\beta_j \cdot sin(2\pi t f_j) + \gamma_j \cdot cos(2\pi t f_j) \right)$$

r estimated as random walk with constrains dependent on geomagnetic latitude B and sun spot number s_n

$$c_s = c_{s,min} + c_{s,max} \cdot e^{-||B| - 15|^2/128}$$

$$\gamma(h) = \begin{cases} c_s \left((3/2)(h/9000) - (1/2)(h/9000)^3 \right), 0 \le h < 9000 \\ c_s \\ h \ge 9000 \end{cases}$$

$$\begin{cases} c_{s,min} = 0.5 + (7.5 - 0.5) \cdot (1/(1 + e^{(s_n - 100)/20})) \\ c_{s,max} = 5.0 + (75.0 - 5.0) \cdot (1/(1 + e^{(s_n - 100)/20})) \end{cases}$$

Shi, C., Gu, S., Lou, Y., & Ge, M. (2012). An improved approach to model ionospheric delays for single-frequency Precise Point Positioning. Advances in Space Research Lou, Y., Zheng, F., Gu, S., Wang, C., Guo, H., & Feng, Y. (2015). Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solutions Zhao, Q., Wang, Y., Gu, S., Zheng, F., Shi, C., Ge, M., Schuh, H. (2018). Refining ionospheric delay modeling for undifferenced and uncombined GNSS data processing. Journal of Geodesy

Outline

- □ Introduction of FUSING
- Features of FUSING
- **D** Products by FUSING
- Conclusions

Architecture of FUSING

BDS-3 DCB estimation

Poster 06-03 Wang Y., et al.

Item	Detail
Date	DOY 133-148, 2018
Signals	B1C(1575.42MHz), B2a(1176.45MHz), B3I(1268.52MHz)
Orbit & Clock	Fixed with WHU final orbit products
Coordinates	Fixed
Statistic	Daily repeatability of estimated DCB values

© Dr. Shengfeng Gu, Fusing Group, WHU (gsf@whu.edu.cn)

GLONASS IFB estimation: Data and strategy

Items	Details
Period	DOY 182~212, 2018
Interval	30 s
	MGEX: 230
Station	CMONC: 249
	NBASS: 114

GLONASS IFB estimation: Efficiency and accuracy

D STD-MEAN: 1.53ns

D STD-MEAN: 1.48ns

GLONASS IFB estimation: Efficiency and accuracy

Orbit and clock estimation: Data and strategy

_180°90° 90° ∰	0	•	90°	180°	Items	Details
• • •	00	000	•		Interval	30 s
45° ° °				45°	Weighting	$P = 1$, $elev \ge 10^{\circ}$
0°	•	0				$P = 5.75877 \times \sin(\text{elev}), \text{ elev} < 10^{\circ}$
					Cut-off elevation	7°
-45° 🖗		•	ଞ ୍	[®] <i>∎</i> –45°	РСО	igs14.atx
	0	0	0 .		Attitude model	Kouba 2009
-90° 4		0	<u></u>	90°	Troposphere	GPT2
- 180 - 90 • GPS	GLO	• BD	S Gal	lileo	Station Coor.	Fixed from igs2008.snx
Itoma Dotoila				Tide	Solid Earth Tide / Ocean Tide / Pole Tide	
Items			Details		Relativity	IERS 2010
Mode			SRIF		Earth Gravity	EGM96 (12×12)
	GDS .	113	GLONAS	S· 101	N body Gravity	JPL DE405
Station number	BDS.	115 7/	Galileo.	73	Earth radiation	GPS and GLONASS (Rodriguez-Solano 2012)
	DDS.	/	Gameo.	15		BDS and Galileo ignored
Satellite number	GPS:	32	GLONAS	S: 24	Integration	Runge-Kutta / Adams
	BDS:	14	Galileo:	13	Observations	GPS: L1/L2 GLONASS: G1/G2
						BDS: B1/B2 Galileo: E1/E5a

Orbit and clock estimation: Efficiency and accuracy

Item	Station	GNSS	Rcv. clock	Sat. Orbit	Sat. Clock	ERP	Troposphere	Ambiguity	Total
value	~113	G/R/C/E	~452	913	~83	6	~113	~2373	~3940
□ Linux Server □ Memory size is 128 GB									
Intel core i5 CPU with 3.50 GHz and 16 cores				Level-1/2/3 caches are 32/256/15360 kb					

System	Radi	Clock (ns) STD			
GPS	2.2	2.8	4.0	5.5	0.030
BDS-GEO	31.5	275.0	310.8	416.2	0.042
BDS-IGSO	7.4	8.3	12.6	17.9	0.032
BDS-MEO	5.2	4.4	12.5	14.1	0.089
Galileo	5.7	6.8	12.0	14.9	0.082
GLONASS	3.8	7.1	10.7	13.4	0.122

□ ~3.71s / epoch

Outline

- □ Introduction of FUSING
- Features of FUSING
- Products by FUSING
- Conclusions

Conclusions

- FUSING (复兴): a new distributed GNSS huge network data processing platform is designed and developed with c++
- Undifferenced and uncombined observation model with ionosphere delay constrained by DESIGN is served as the most basic model in Fusing [Yintong Wang]
- BDS-3 satellite DCD estimation with a precision of ~0.2 ns based 14 IGMAS stations [Yintong Wang]
- GLONASS IFB estimation with a precision of 1.5 ns for each frequency with over 550 stations of IGS, MGEX, CMONOC and NBASS [Zheng Zhang]
- Efficient SRIF for combined satellite orbit and clock solution with about 113 stations for G/R/C/E: 3.71 s/epoch [Xinhao Yang/Xiaolei Dai/Yun Qin/Yaquan Peng]
- Ionosphere modeling with a precision of ~1 TECU over China in 2017 [Zheng Zhang/Xueyuan Jin/Xiaomin Luo]

Thank you for your attention

Acknowledgements: We thank YOYOSYS (<u>http://www.yoyosys.com/</u>) for their distribution environment, and also thank IGS, MGEX, CMONOC, iGMAS and NBASS for providing multi-frequency multi-GNSS observations.