

Multi-GNSS Absolute Antenna Field Calibration with a Robot at ETH Zurich

基于机器手臂的多模GNSS绝对天线校准

Daniel Willi, Markus Rothacher Institute of Geodesy and Photogrammetry, ETH Zürich

Calibration of receiver antennas

State of the art

- Routinely performed nowadays
 - Geo++, NGS, University of Hannover, Geoscience Australia, Wuhan, University of Bonn, ...
- GNSS modernization
 - Galileo E5a
 - GPS L5
 - Beidou B1, B2, B3
 - GLONASS 3rd frequency, GLONASS CDMA
- Consistency between methods
 - Sub-millimetre consistency not achieved yet (Wim and Moore, 2013)
 - Significant offsets found between different calibration institutes (Kallio et al. 2018)

Definitions

Phase Centre Correction (PCC)

Phase Centre Offset (PCO)

- Connection between the physical Antenna Reference Point (ARP) and the virtual / conventional Mean Phase Centre (MPC)
- $X_{\text{MPC}} = X_{\text{ARP}} + PCO$

Phase Centre Variations (PCV)

Direction-dependent range correction function

•
$$\Phi_A^i = \Phi_A(\alpha^i, z^i)$$

- **ARP** Antenna Reference Point
- **MPC** Mean Phase Center
- **PCC** Phase Centre Correction
- **PCO** Phase Centre Offset
- **PCV** Phase Centre Variation

Existing calibration methods

	Anechoic chamber	Relative field calibration	Absolute field calibrations
GNSS signal	No, artificial signal	Yes	Yes
Fast movement	Yes, robot or moving source	No, manual rotation every 24h	Yes, rotation by a robot
Infrastructure	Very demanding	Virtually none	Demanding

System components

Triple difference approach

1) Station differences

- satellite clocks, ionosphere, troposphere
- 2) Satellite differences
- receiver clocks
- 3) Time differences
- multipath, reference PCC, coordinate bias

Rotation sequence

- 1440 to 4320 orientations (40 min to 4 h)
- Randomization
- 20 Hz measurements
- 1 2 seconds travel time between orientations

$$P_{AB,t_{1}t_{2}}^{ij} = \left((P_{B}^{j} - P_{A}^{j}) - (P_{B}^{i} - P_{A}^{i}) \right)_{t_{2}} - \left((P_{B}^{j} - P_{A}^{j}) - (P_{B}^{i} - P_{A}^{i}) \right)_{t_{1}}$$

Parametrisation of PCC

Spherical Harmonics expansion

$$\Phi_A(\alpha^i, z^i) = \sum_{m=0}^{m_{\max}} \sum_{n=0}^m \tilde{P}_{mn}(\cos z^i) \left(a_{mn} \cos n\alpha^i + b_{mn} \sin n\alpha^i\right)$$

- PCO terms present in the series
- Various singularities
 - Absolute term
 - Anti-symmetrical terms

EHzürich

Grid parametrization

Spherical harmonics parametrization

Degree and order 12 (91 param.)

Degree and order 8 (45 param.)

Results

- Repeatability
- Comparison with Geo++ calibrations
- Small network validation

Type-mean Geo++ calibration

TRM57971.00	NONE
TRM57971.00	NONE

Individual Geo++ calibration

JAV_GRANT-G3T Repeatability (GPS L1)

	RMS [mm]	MIN [mm]	MAX [mm]
0 deg mask	0.44	-1.74	1.21
10 deg mask	0.41	-1.62	0.80

SEPCHOKE_B3E6 SPKE Repeatability (GPS L1)

	RMS [mm]	MIN [mm]	MAX [mm]
0 deg mask	0.51	-0.64	2.51
10 deg mask	0.24	-0.64	0.70

TRM57971.00 comparison with Geo++ (GPS L1)

High precision network for validation

Campaign

- 4 GNSS session / 48 h each
- Permutation and rotations
- 4 stations, 5 m distance

Ground truth

- Optical triangulation
- 0.2 mm standard deviation of final coordinates

Processing

- Bernese GNSS Software V5.2
- Unity weighting
- 10 degree elevation cut-off

Single frequency residuals

Ionosphere free residuals

002

519

Conclusions

- Prototype operational
 - Interface (receiver, robot steering)
 - Triple-difference PCC estimation
 - Potentially all CDMA-signals (tested for GPS and Galileo)
- Repeatability below millimetre level
 - Very good for all elevations > 10 degree
- Plausibility proved by comparison with de facto standard (Geo++)
- Accuracy in the coordinate domain significantly improved with respect to typemean calibrations
- Outlook: extended calibration campaign

Acknowledgement

- The Federal Office of Topography swisstopo
 - Dr. Elmar Brockmann, Dr. Simon Lutz
- Deutsches GeoForschungsZentrum GFZ
 - Dr. Benjamin Männel, Markus Bradke

Multi-GNSS Absolute Antenna Field Calibration with a Robot at ETH Zurich

基于机器手臂的多模GNSS绝对天线校准

Daniel Willi, Markus Rothacher Institute of Geodesy and Photogrammetry, ETH Zürich