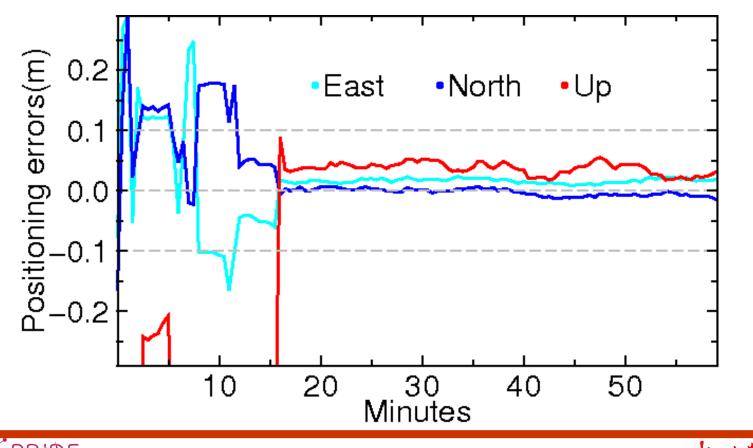


Rapid PPP ambiguity resolution in case of triple-frequency multi-GNSS data

Jiang Guo - Jianghui Geng


GNSS Research Center, Wuhan University, China

IGS Workshop 2018 29 October to 2 November Wuhan, China

GNSS Research Center Wuhan University

Background

- PPP-AR has been suffering from slow convergence
 - Poor precision of pseudorange
 - Slowly-varying satellite geometry

Background

- Triple-frequency PPP-AR poses new opportunities
 - Geng and Bock (2013) "Cascading PPP-AR method"
 - Gu (2015) "Triple-frequency PPP-AR based on raw observations"

	Wavelength (m)		
Constellation	Extra-wide-lane (0,1,-1)	Wide-lane (1,-1,0)	
GPS	5.86	0.86	
BeiDou	4.88	0.84	
Galileo	9.77	0.75	
QZSS	5.86	0.86	

Status of multi-frequency satellites

Constellation	Туре	Signal	Number	
GPS	BLOCK-IIF	L1/L2/L5	12	
BeiDou	BeiDou-2	B1I/B2I/B3I	14	
Galileo	Galileo	E1/E5a/E5b/E6	22	
QZSS	QZSS	L1/L2/L5/L6	4	
-60° 0° 60° 120° 180° -60° 0° 60° 120° 180° -60° 0° 60° 120° 180° -60° 0° 60° 120° 180° 180° 180° 180° 180° 180° 180° 18				

. QUT1

. RMIT

PETH

120

-30

-60

180

-30

-30

-40

360

-32

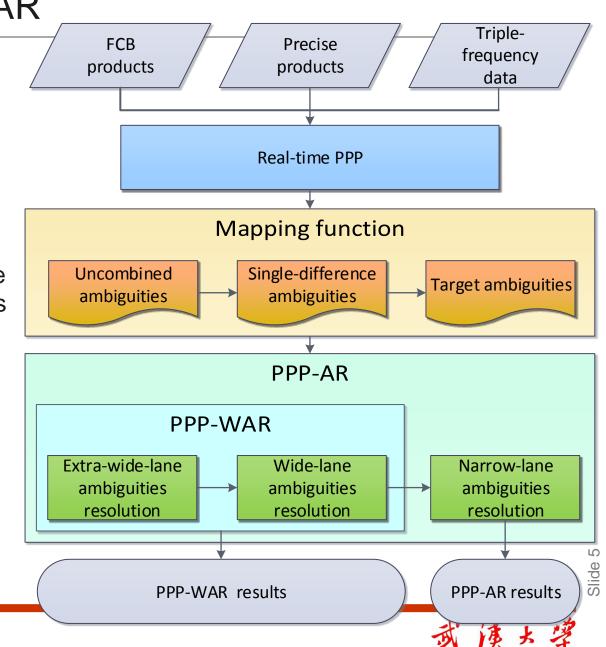
大学

Slide 4

-30

-60

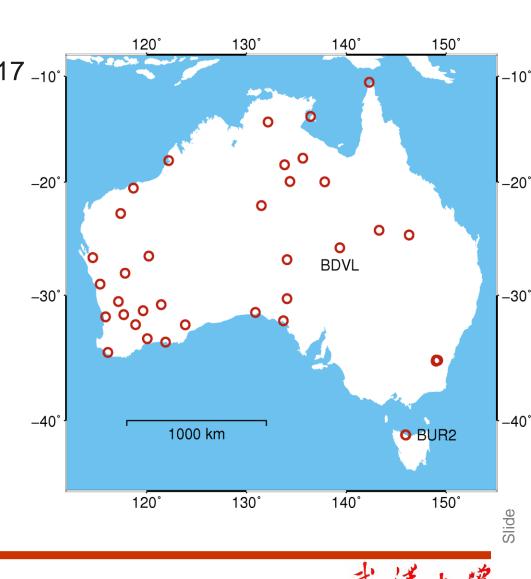
PRIDE

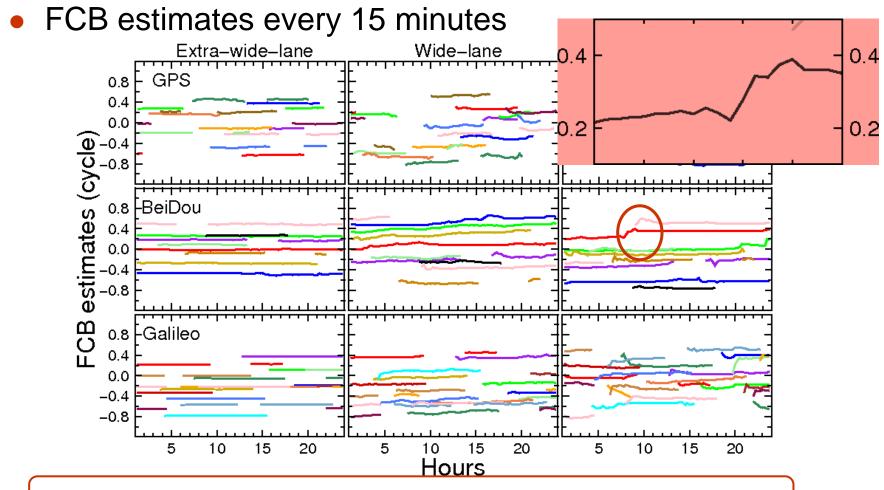

acers to Image Decipher the Earth Lab . JOHN

PPP-WAR&PPP-AR

- Target ambiguities
 - Extra-wide-lane ...
 - Wide-lane ...
 - Narrow-lane …
- PPP-AR
 Solve both wide-lane and narrow-lane ambiguities
- PPP-WAR

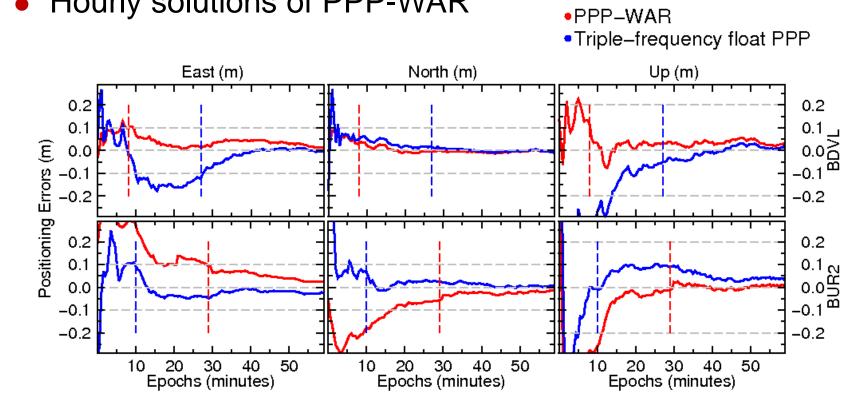
PRIDE Positioning Racers to Image & Decidence the Farth


 Solve two wide-lane ambiguities only


Positioning experiment

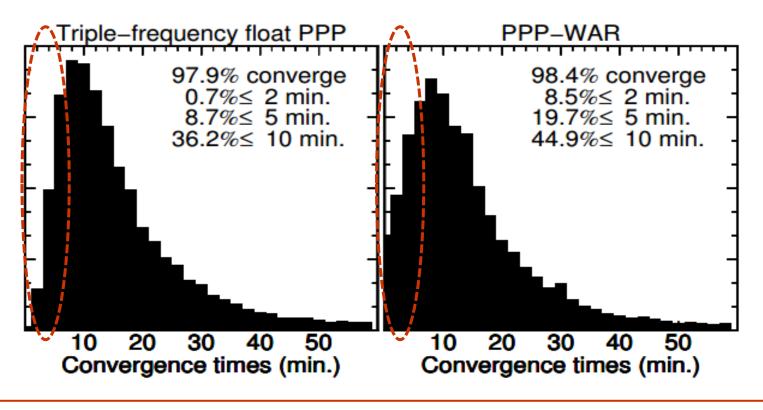
- Data & products
 31 days from 335-365, 2017 _10°
 - 35 stations for PPP-AR
 - Predicted orbit from GFZ

- Experiment
 - PPP-WAR
 Triple-frequency float PPP
 - Triple-frequency PPP-AR
 Dual-frequency PPP-AR


Wide-lane and narrow-lane FCBs should be predicted with cautions

PPP wide-lane ambiguity resolution(PPP-WAR)

Hourly solutions of PPP-WAR


24.6% of PPP-WAR solutions suffered from deterioration

PPP wide-lane ambiguity resolution(PPP-WAR)

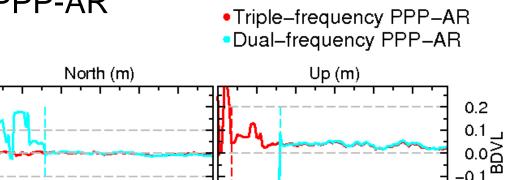
• Convergence time distribution

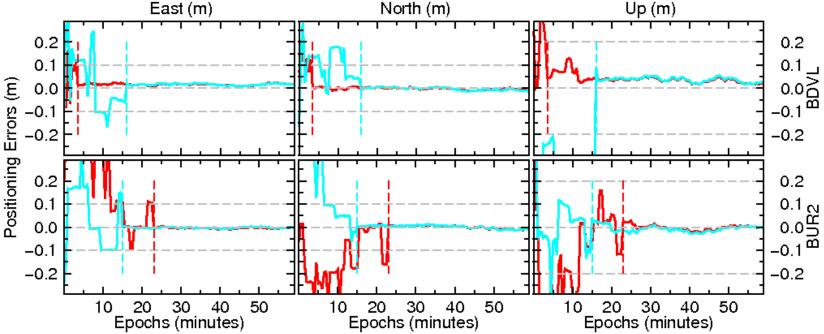
20% PPP-WAR converged within 5 minutes while 9% for float PPP

PPP wide-lane ambiguity resolution(PPP-WAR)

Mean RMS of positioning errors in the first 10 min.

Satellite number	Triple-freq. float (m)	PPP-WAR (m)
10-11	0.30/0.20/0.50	0.14/0.10/0.30
12-13	0.26/0.20/0.48	0.13/0.10/0.27
14-15	0.24/0.19/0.43	0.12/0.09/0.26
16-17	0.22/0.17/0.40	0.11/0.08/0.25
18-19	0.21/0.15/0.40	0.10/0.07/0.25
20-21	0.21/0.14/0.40	0.10/0.06/0.24
Mean	0.23/0.18/0.43	0.12/0.08/0.27


PPP-WAR reduces the positioning errors on average by nearly 50%



Triple-frequency PPP-AR

Hourly solutions of PPP-AR

12% triple-frequency AR converged slower than dual-frequency counterparts

Triple-frequency PPP-AR

• Convergence time counted by satellite number

Satellite number	Dual-freq. PPP-AR(min)	Triple-freq. PPP-AR(min)	Reduction
10-11	17.9	14.4	19.6%
12-13	13.6	10.2	25.0%
14-15	10.0	7.2	28.0%
16-17	7.5	5.0	33.3%
18-19	6.4	3.5	45.3%
20-21	5.2	2.7	48.1%
Mean	9.2	6.1	33.7%

Convergence time of triple-frequency PPP-AR is shorten when involving more satellites

Conclusions

- FCBs every 15 minutes were quite stable over time
 - The STDs of extra-wide-lane, wide-lane and narrow-lane are less than 0.005, 0.025 and 0.03 cycles respectively
- The resolution of both wide-lane ambiguities can accelerate PPP convergence in the most time
 - 24.5% of hourly solutions suffer from deteriorations
- Triple-frequency PPP-AR converge faster comparing to dual-frequency PPP-AR
 - The mean initialization period was 6.1 and 9.2 minutes for triplefrequency and dual-frequency PPP-AR, respectively
 - The mean initialization period of triple-frequency PPP-AR became clearly shorter when involving more satellites

Thank you for your attention!

guojiang@whu.edu.cn Homepage: pride.whu.edu.cn

