See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329337708

Estimating a set of IFCBs to make IGS ionospheric-free clock product compatible with various triple-frequency PPP models

 $Presentation \cdot \text{December 2018}$

DOI: 10.13140/RG.2.2.13986.68807

CITATIONS 0

3 authors, including:

Lin Pan

Wuhan University 20 PUBLICATIONS 167 CITATIONS

SEE PROFILE

All content following this page was uploaded by Lin Pan on 01 December 2018.

Estimating a set of IFCBs to make IGS ionospheric-free clock product compatible with various triple-frequency PPP models

Lin Pan, Xiaohong Zhang, Jingnan Liu School of Geodesy and Geomatics, Wuhan University

BDS-2: B1/B2/B3 BDS-3/3S: B1/B3/B1C/B2a/B2b Galileo: E1/E5A/E5B/E5(A+B)/E6 GPS Block IIF: L1/L2/L5 GLONASS-K/GLONASS-M: G1/G2/G3 QZSS: L1/L2/L5

Benefit: formation of inter-frequency combinations with good features; increased measurement redundancy Challenge : satellite clock inconsistency

Montenbruck et al. (2010) identified the presence of time-, signal- and satellite-dependent line biases in carrier phase observations.

2. IGS satellite clocks

Code and carrier-phase observations: $P_{i} = \rho + cdt_{r} - cdt + I \cdot \gamma_{i} + T + d_{r,i} + d_{i}$ $\Phi_{i} = \rho + cdt_{r} - cdt - I \cdot \gamma_{i} + T + N_{i} + b_{r,i} + b_{c,i} + b_{v,i}$

IGS satellite clocks (L1/L2 ionospheric-free (IF) satellite clocks): $cdt_{IF,12} = cdt - (a_{12,1} \cdot d_1 + a_{12,2} \cdot d_2) - (a_{12,1} \cdot b_{v,1} + a_{12,2} \cdot b_{v,2})$

L1/L5 IF satellite clocks:

$$cdt_{IF,15} = cdt - \underbrace{(a_{15.1} \cdot d_1 + a_{15.2} \cdot d_5) - (a_{15.1} \cdot b_{v,1} + a_{15.2} \cdot b_{v,5})}_{= cdt_{IF,12} + IFCB}$$

Kept consistent with Inter-Frequency Clock Bias (IFCB)

$$a_{12,1} = f_1^2 / (f_1^2 - f_2^2) \qquad a_{12,2} = -f_2^2 / (f_1^2 - f_2^2)$$

$$a_{15,1} = f_1^2 / (f_1^2 - f_5^2) \qquad a_{15,2} = -f_5^2 / (f_1^2 - f_5^2)$$

Satellite clock determination (Guo and Geng 2017): IF-PPP1 & UC-PPP Least-squares adjustment (Montenbruck et al. 2012): IF-PPP1 Epoch-differenced (ED) strategy (Li et al. 2016): IF-PPP1

IFCB (IF-PPP1: L1/L2 IF+L1/L5 IF)

```
Introduction of IFCB:
```

$$cdt_{IF,15} = cdt_{IF,12} + \beta_{IF,15} + \delta_{IF,15}$$

Code-specific IFCB (CIFCB):

$$\beta_{IF,15} = (a_{12,1} \cdot d_1 + a_{12,2} \cdot d_2) - (a_{15,1} \cdot d_1 + a_{15,2} \cdot d_5) \qquad \begin{cases} DCB(P_1, P_2) = d_1 - d_2 \\ DCB(P_1, P_2) = d_1 - d_2 \end{cases}$$

$$= -a_{12,2} \cdot DCB(P_1, P_2) + a_{15,2} \cdot DCB(P_1, P_5) \qquad \begin{cases} DCB(P_1, P_2) = d_1 - d_2 \\ DCB(P_1, P_5) = d_1 - d_5 \end{cases}$$

Phase-specific IFCB (PIFCB):

$$\delta_{IF,15} = (a_{12,1} \cdot b_{v,1} + a_{12,2} \cdot b_{v,2}) - (a_{15,1} \cdot b_{v,1} + a_{15,2} \cdot b_{v,5})$$

IFCB (IF-PPP1: L1/L2 IF+L1/L5 IF)

Triple-frequency GFIF (Geometry-Free and Ionospheric-Free) carrier phase combinations:

$$\begin{aligned} \text{GFIF} &= (a_{12,1} \cdot \Phi_1 + a_{12,2} \cdot \Phi_2) - (a_{15,1} \cdot \Phi_1 + a_{15,2} \cdot \Phi_5) \\ &= (a_{12,1} \cdot b_{v,1} + a_{12,2} \cdot b_{v,2}) - (a_{15,1} \cdot b_{v,1} + a_{15,2} \cdot b_{v,5}) + N_{\text{GFIF}} + b_{r,\text{GFIF}} + b_{c,\text{GFIF}} \\ &= \delta_{IF,15} + N_{\text{GFIF}} + b_{r,\text{GFIF}} + b_{c,\text{GFIF}} \end{aligned}$$

$$\begin{cases} N_{\text{GFIF}} = (a_{12,1} \cdot N_1 + a_{12,2} \cdot N_2) - (a_{15,1} \cdot N_1 + a_{15,2} \cdot N_5) \\ b_{r,\text{GFIF}} = (a_{12,1} \cdot b_{r,1} + a_{12,2} \cdot b_{r,2}) - (a_{15,1} \cdot b_{r,1} + a_{15,2} \cdot b_{r,5}) \\ b_{c,\text{GFIF}} = (a_{12,1} \cdot b_{c,1} + a_{12,2} \cdot b_{c,2}) - (a_{15,1} \cdot b_{c,1} + a_{15,2} \cdot b_{c,5}) \end{cases}$$

PIFCB observation equation

$$\delta_{IF,15} = \text{GFIF} - (N_{\text{GFIF}} + b_{r,\text{GFIF}} + b_{c,\text{GFIF}})$$

IFCB (IF-PPP1: L1/L2 IF+L1/L5 IF)

Estimation process of PIFCB:

 $\Delta \delta_{IF,15,r}^{s}(t,t-1) = \operatorname{GFIF}_{r}^{s}(t) - \operatorname{GFIF}_{r}^{s}(t-1)$

Eliminating stable terms with ED processing

$$\Delta \delta_{IF,15}^{s}(t,t-1) = \left[\sum_{r=1}^{n(t,t-1)} \Delta \delta_{IF,15,r}^{s}(t,t-1) \cdot w_{r}^{s}(t,t-1) \right] / \left[\sum_{r=1}^{n(t,t-1)} w_{r}^{s}(t,t-1) \right]$$

 $w_r^s(t,t-1) = \begin{cases} \sin el_r^s(t,t-1) & el_r^s(t,t-1) < 40^\circ \text{A weighted average of solutions} \\ 1 & el_r^s(t,t-1) \ge 40^\circ & \text{over the entire network} \end{cases}$

 $\delta_{IF,15}^{s}(t) = \delta_{IF,15}^{s}(t_0) + \sum_{j=t_0+1}^{t} \Delta \delta_{IF,15}^{s}(j, j-1)$ The PIFCB at each epoch can be obtained with an accumulation

Li et al. (2016): ED strategy

IFCB (UC-PPP: L1 UC+L2 UC+L5 UC)

$$\begin{cases} cdt_{UC,1} = cdt_{IF,12} + \beta_{UC,1} + \delta_{UC,1} \\ cdt_{UC,2} = cdt_{IF,12} + \beta_{UC,2} + \delta_{UC,2} \\ cdt_{UC,5} = cdt_{IF,12} + \beta_{UC,5} + \delta_{UC,5} \end{cases}$$

L1/L2 IF satellite clocks are converted into uncombined (UC) satellite clocks with estimated L1, L2 and L5 UC CIFCB and PIFCB

$$\begin{cases} \beta_{UC,1} = -a_{12,2} \cdot \text{DCB}(P_1, P_2) & \text{DCB is used to compute the} \\ \beta_{UC,2} = a_{12,1} \cdot \text{DCB}(P_1, P_2) & \text{DCB is used to compute the} \\ \beta_{UC,5} = -a_{12,2} \cdot \text{DCB}(P_1, P_2) + \text{DCB}(P_1, P_5) & \text{L1, L2 and L5 UC CIFCB} \\ \delta_{UC,1} = 0 & \delta_{UC,2} = 0 & \text{Both L1 and L2 UC PIFCB equal} \\ \text{to 0, while an extra consideration of} \\ \text{L5 UC PIFCB is necessary} \end{cases}$$

IFCB (UC-PPP: L1 UC+L2 UC+L5 UC)

$$\begin{cases} \overline{P}_{1} = \rho + cdt_{r,E} + I_{E} + T + [-(a_{12,1} - a_{12,2}) \cdot b_{v,1} - 2 \cdot a_{12,2} \cdot b_{v,2}] \\ \overline{P}_{2} = \rho + cdt_{r,E} + I_{E} \cdot \gamma_{2} + T + [-2 \cdot a_{12,1} \cdot b_{v,1} + (a_{12,1} - a_{12,2}) \cdot b_{v,2}] \\ \overline{P}_{5} = \rho + cdt_{r,E} + I_{E} \cdot \gamma_{5} + T + g_{UC-PPP} + [a_{12,2} \cdot (\gamma_{2} + \gamma_{5}) \cdot b_{v,1} + a_{12,2} \cdot (1 - \gamma_{5}) \cdot b_{v,2} + \delta_{UC,5}] \\ \overline{\Phi}_{1} = \rho + cdt_{r,E} - I_{E} + T + N_{1,E} \\ \overline{\Phi}_{2} = \rho + cdt_{r,E} - I_{E} \cdot \gamma_{2} + T + N_{2,E} \\ \overline{\Phi}_{5} = \rho + cdt_{r,E} - I_{E} \cdot \gamma_{5} + T + N_{5,E} + \delta_{UC,5} \end{cases}$$
The UC triple-frequency PPP observation equations after applying the L1, L2

$$\begin{aligned} cdt_{r,E} &= cdt_r + a_{12,1} \cdot d_{r,1} + a_{12,2} \cdot d_{r,2} \\ I_E &= I - a_{12,2} \cdot (d_{r,2} - d_{r,1}) + a_{12,2} \cdot (b_{v,2} - b_{v,1}) \\ g_{UC-PPP} &= (-\gamma_5 \cdot a_{12,2} - a_{12,1}) \cdot d_{r,1} - a_{12,2} \cdot (1 - \gamma_5) \cdot d_{r,2} + d_{r,5} \\ N_{1,E} &= N_1 + b_{r,1} + b_{c,1} - d_1 - (a_{12,1} - a_{12,2}) \cdot d_{r,1} - 2 \cdot a_{12,2} \cdot d_{r,2} \\ N_{2,E} &= N_2 + b_{r,2} + b_{c,2} - d_2 - (a_{12,1} - \gamma_2 \cdot a_{12,2}) \cdot d_{r,1} - a_{12,2} \cdot (1 + \gamma_2) \cdot d_{r,2} \\ N_{5,E} &= N_5 + b_{r,5} + b_{c,5} - d_5 - (a_{12,1} - \gamma_5 \cdot a_{12,2}) \cdot d_{r,1} - a_{12,2} \cdot (1 + \gamma_5) \cdot d_{r,2} \end{aligned}$$

IFCB (UC-PPP: L1 UC+L2 UC+L5 UC)

 $\delta_{UC,5} = a_{12,1} \cdot (1 - \gamma_5 / \gamma_2) \cdot b_{v,1} - a_{12,2} \cdot (\gamma_5 - 1) \cdot b_{v,2} - b_{v,5} \qquad \begin{array}{c} \text{Formulating the L5} \\ \text{UC PIFCB} \\ \text{UC PIFCB} \\ 1/L5 \text{ IF PIFCB:} \\ \delta_{IF,15} = (a_{12,1} \cdot b_{v,1} + a_{12,2} \cdot b_{v,2}) - (a_{15,1} \cdot b_{v,1} + a_{15,2} \cdot b_{v,5}) \\ = (a_{12,1} - a_{15,1}) \cdot b_{v,1} + a_{12,2} \cdot b_{v,2} - a_{15,2} \cdot b_{v,5} \end{array}$

$$\delta_{UC,5} \cdot a_{15,2} = (a_{12,1} - a_{15,1}) \cdot b_{v,1} + a_{12,2} \cdot b_{v,2} - a_{15,2} \cdot b_{v,5} = \delta_{IF,15}$$

The estimated I 1/I 5 IF

 $\delta_{UC,5} = \delta_{IF,15}/a_{15,2}$ The estimated L1/L5 IF PIFCB can be converted into L5 UC PIFCB

 $a_{12,1} = f_1^2 / (f_1^2 - f_2^2) \qquad a_{12,2} = -f_2^2 / (f_1^2 - f_2^2) \quad \text{Coefficients for L1/L2 and} \\ a_{15,1} = f_1^2 / (f_1^2 - f_5^2) \qquad a_{15,2} = -f_5^2 / (f_1^2 - f_5^2) \quad \text{L1/L5 IF combinations}$

IFCB (IF-PPP2: L1/L2/L5 IF)

 $\begin{cases} e_1 + e_2 + e_5 = 1 & \text{The combination coefficients} \\ e_1 + e_2 \cdot \gamma_2 + e_5 \cdot \gamma_5 = 0 & \text{fulfill these two conditions} \end{cases}$

$$cdt_{IF,125} = cdt - (e_1 \cdot d_1 + e_2 \cdot d_2 + e_5 \cdot d_5) - (e_1 \cdot b_{v,1} + e_2 \cdot b_{v,2} + e_5 \cdot b_{v,5})$$

formula

 $cdt_{IF,125} = cdt_{IF,12} + \beta_{IF,125} + \delta_{IF,125}$ Introduction of similar IFCBs

$$\beta_{IF,125} = (a_{12,1} \cdot d_1 + a_{12,2} \cdot d_2) - (e_1 \cdot d_1 + e_2 \cdot d_2 + e_5 \cdot d_5)$$

= $(e_2 - a_{12,2}) \cdot \text{DCB}(P_1, P_2) + e_5 \cdot \text{DCB}(P_1, P_5)$ CIFCB

IFCB (IF-PPP2: L1/L2/L5 IF)

 $\delta_{IF,125} = (a_{12,1} \cdot b_{\nu,1} + a_{12,2} \cdot b_{\nu,2}) - (e_1 \cdot b_{\nu,1} + e_2 \cdot b_{\nu,2} + e_5 \cdot b_{\nu,5})$ Formulating the L1/L2/L5 IF PIFCB $= c_1 \cdot b_{\nu,1} + c_2 \cdot b_{\nu,2} + c_5 \cdot b_{\nu,5}$ $\begin{cases} c_{1} = a_{12,1} - e_{1} \\ c_{2} = a_{12,2} - e_{2} \\ c_{5} = -e_{5} \end{cases} \quad \begin{cases} c_{1} + c_{2} + c_{5} = 0 \\ c_{1} + c_{2} \cdot \gamma_{2} + c_{5} \cdot \gamma_{5} = 0 \end{cases} \quad \begin{cases} c_{1} = \frac{\gamma_{5} - \gamma_{2}}{\gamma_{2} - 1} \cdot c_{5} \\ c_{2} = \frac{1 - \gamma_{5}}{\gamma_{2} - 1} \cdot c_{5} \end{cases} \quad \text{Three combination} \\ \text{coefficients in L1/L2/L5} \\ \text{IF PIFCB} \end{cases}$ $\delta_{IF,125} = \frac{\gamma_5 - \gamma_2}{\gamma_5 - 1} \cdot c_5 \cdot b_{\nu,1} + \frac{1 - \gamma_5}{\gamma_5 - 1} \cdot c_5 \cdot b_{\nu,2} + c_5 \cdot b_{\nu,5}$ $= \left(\frac{\gamma_5 - \gamma_2}{\gamma_2 - 1} \cdot b_{\nu,1} + \frac{1 - \gamma_5}{\gamma_2 - 1} \cdot b_{\nu,2} + b_{\nu,5}\right) \cdot c_5$ Various L1/L2/L5 IF PIFCBs are proportionally correlated with each other $= \left(\frac{\gamma_{5} - \gamma_{2}}{\gamma_{2} - 1} \cdot b_{v,1} + \frac{1 - \gamma_{5}}{\gamma_{2} - 1} \cdot b_{v,2} + b_{v,5}\right) \cdot (-e_{5})$ The estimated L1/L5 IF PIFCB can also be $\delta_{IF,125} = \delta_{IF,15} \cdot e_5 / a_{152}$ converted into L1/L2/L5 IF PIFCB

Satellite clocks for various triple-frequency PPP models

Positioning accuracy

Epoch-wise RMS values of UC-PPP (left), IF-PPP2 (middle) and IF-PPP1 (right) positioning errors without and with PIFCB consideration for different observational lengths

Convergence time

Distribution of convergence time for 24-h UC-PPP solutions

Phase observation residual

Phase observation residuals for UC triple-frequency PPP at stations AJAC and CEBR on April 2, 2017

Extra-Wide-Lane (EWL) UPD estimates

Epoch-wise satellite EWL UPD estimates without (left) and with (right) PIFCB consideration on April 2, 2017

5. Conclusions

 $\frac{1}{2}$ All the new-generation GNSS satellites are designed to transmit signals on three or more frequencies. The satellite clock consistency must be ensured.

² The mathematical conversion formula among the PIFCBs of different triple-frequency PPP models is rigorously derived.

³ After applying the PIFCB corrections, the positioning accuracy, convergence time, phase observation residuals, and EWL UPD estimates are significantly improved.

Thank You for Your Attention!

More details refer to our recently published paper: Pan L, et al. 2018. Journal of Geodesy. doi:10.1007/s00190-018-1176-5