

Phase bias product and open-source software for undifferenced ambiguity resolution at Wuhan University

Jianghui GENG (耿江辉), Xingyu CHEN

GNSS Research Center, Wuhan University, China

IGS Workshop 2018
31 Oct 2018
Wuhan China

+BIAS/DESCRIPTION

- Align pseudorange to obey IGS "conventions";
- Resolve Melbourne-Wübbena ambiguities.
- IGS has been standardizing bias products since 2012 (Schaer 2018)
 - to address flourishing observables due to multi-GNSS;
 - to formulate IGS conventions on bias products.
- However, phase biases are seldom discussed.

SINEX_BIAS—Solution (Software/technique) INdependent EXchange Format for GNSS Biases Version 1.00

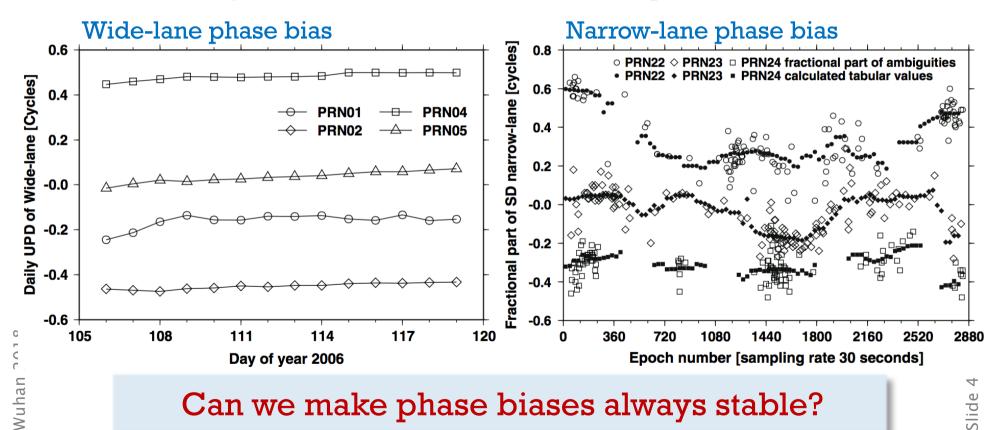
Stefan Schaer swisstopo/AIUB stefan.schaer@aiub.unibe.ch

June 29, 2011 (Draft Version 0.01) December 7, 2016 (Finalized Version 1.00) October 3, 2018

*KEYW	ORD				_ VA	LUE (S	s)					
OBSERVATION_SAMPLING					_		300					
PARAI	PARAMETER SPACING					86	6400					
DETE	DETERMINATION_METHOD					INTER-FREQUENCY_BIAS_ESTIMATION						
BIAS	BIAS_MODE					ABSOLUTE						
TIME	TIME_SYSTEM											
	SATELLITE CLOCK REFERENCE OBSERVABLES											
SATE	SATELLITE_CLOCK_REFERENCE_OBSERVABLES				R	C1P	C2P					
-BIAS,	/DESCI	RIPTI	ON									
*												
+BIAS,												
			STATIONOBS1				BIAS_END		ESTIMATED_VALUE	_STD_DEV		
	G063		C1C				0 2017:002:00000		10.7141	0.0000		
	G063		C1W				0 2017:002:00000		11.8171	0.0000		
	G063		C2C				0 2017:002:00000		18.3161			
	G063		C2W				0 2017:002:00000		19.4621			
	G061		C1C				0 2017:002:00000		-12.5893			
OSB	G061		C1W				0 2017:002:00000		-13.9193			
	G061		C2W				0 2017:002:00000		-22.9243			
	G069		C1C				2017:002:00000		5.6814			
OSB	G069		C1W				0 2017:002:00000		7.2464			
	G069		C2C				2017:002:00000		12.2914			
	G069		C2W				0 2017:002:00000		11.9344			
OSB	G034		C1C				2017:002:00000		0.3623			
	G034		C1W				0 2017:002:00000		0.7543			
	G034		C2W				0 2017:002:00000		1.2423			
OSB	G050		C1C				0 2017:002:00000		-5.4140			
	G050		C1W				0 2017:002:00000		-4.2770			
OSB	G050		C2C				0 2017:002:00000		-6.6360			
OSB	G050		C2W				0 2017:002:00000		-7.0440			
	G067		C1C				0 2017:002:00000		8.3530			
OSB	G067	G06	C1W	2017	: 001	:00000	0 2017:002:00000	ns	10.0410	0.0000		

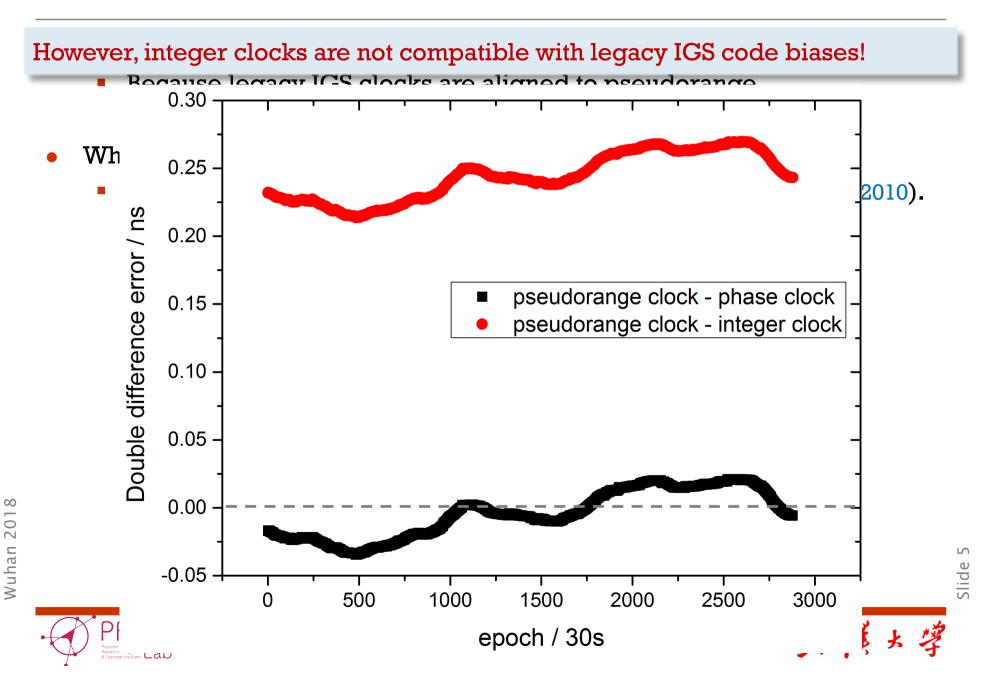
Wuhan 2018

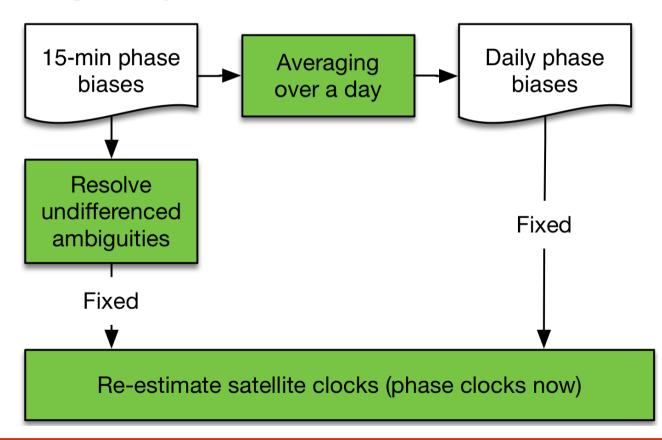
Phase biases


- Phase biases are relevant
 - not only in ambiguity resolution,
 - but also in highly accurate positions.
- Uncalibrated phase delays/fractional-cycle biases (UPD/FCB)
 - Satellite specific
 - for undifferenced ambiguity resolution.
- Code-phase biases (CPB) for GLONASS (Sleewaegen et al. 2012; Geng et al. 2017)
 - Station specific
 - for double-difference/undifferenced ambiguity resolution
 - See the poster by Pan et al. (PS06-04).
- Inter-system phase biases (ISPB) (Odijk et al. 2013; Geng et al. 2017)
 - Station specific
 - for double-difference/undifferenced ambiguity resolution.
- We focus on UPD/FCB, or simply <u>phase bias</u> for brevity, in this presentation.

Problems with phase biases (UPDs/FCBs)

- Phase biases are not always stable over time.
 - Wide-lane phase biases are quite stable over days or even months;
 - But narrow-lane phase biases have significant subdaily signatures.
- In 2006, daily wide-lane and 15-min narrow-lane phase biases (Ge et al. 2006).




Solutions: "Better" clocks?

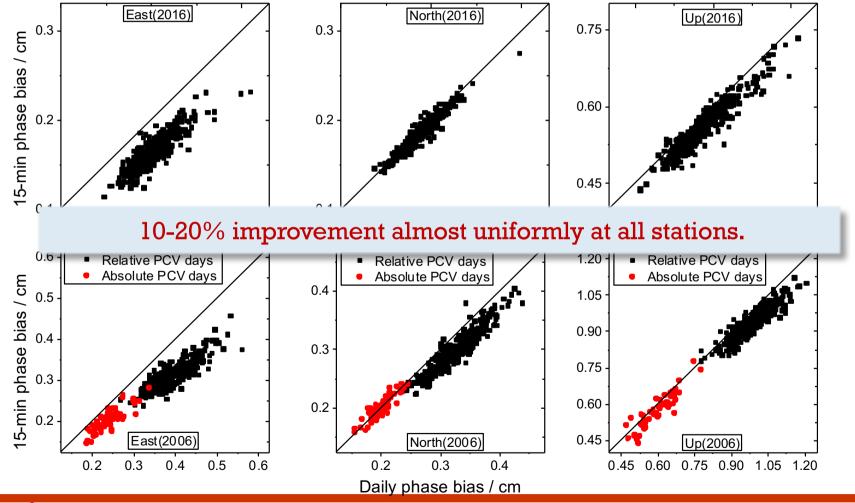
Wuhan 2018

New phase bias & phase clock products

- We derive
 - stable phase biases (daily, instead of 15-min, calculations),
 - phase clocks (like integer clocks),
 - and compatibility with IGS code biases.

How do the new phase bias & phase clock work?

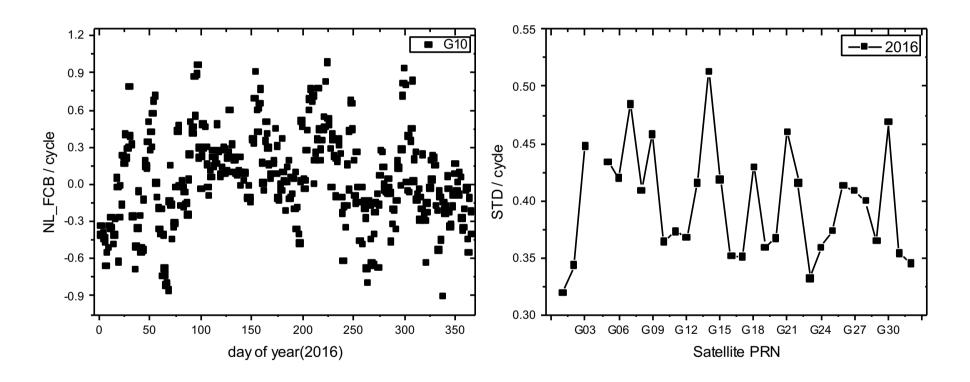
- 180-200 globally distributed stations
- Daily positions in 2006 & 2016 compared to IGS solutions


Solv	ition timos		2006 (mm)		2016 (mm)		
5010	ition types	East	North	Up	East	North	Up
Float	IGS clock	3.3	2.1	6.2	3.2	1.9	6.2
	Phase clock	3.3	2.1	6.1	3.2	1.9	6.1
Fixed	15-min phase bias	2.4	2.0	6.0	2.0	1.9	5.8
	Daily phase bias	2.1	2.0	5.8	1.6	1.8	5.6

10-20% improvement after applying daily phase biases and codecompatible phase clocks

How do the new phase bias & phase clock work?

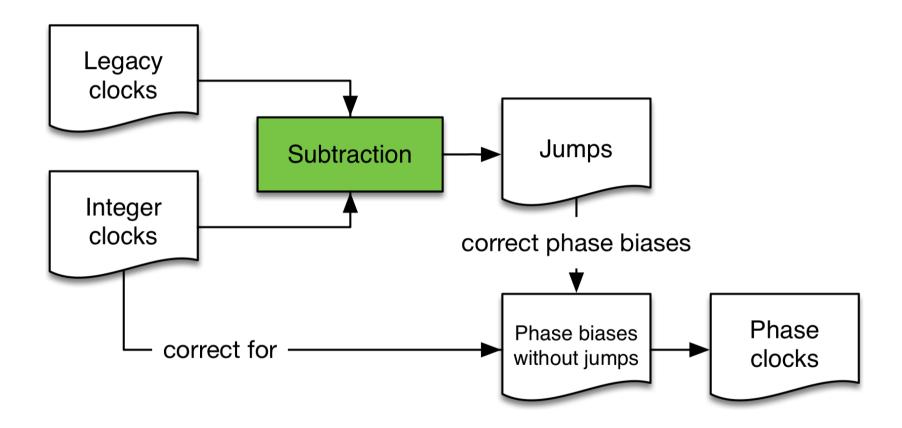
- 180-200 globally distributed stations
- Daily positions in 2006 & 2016 compared to IGS solutions



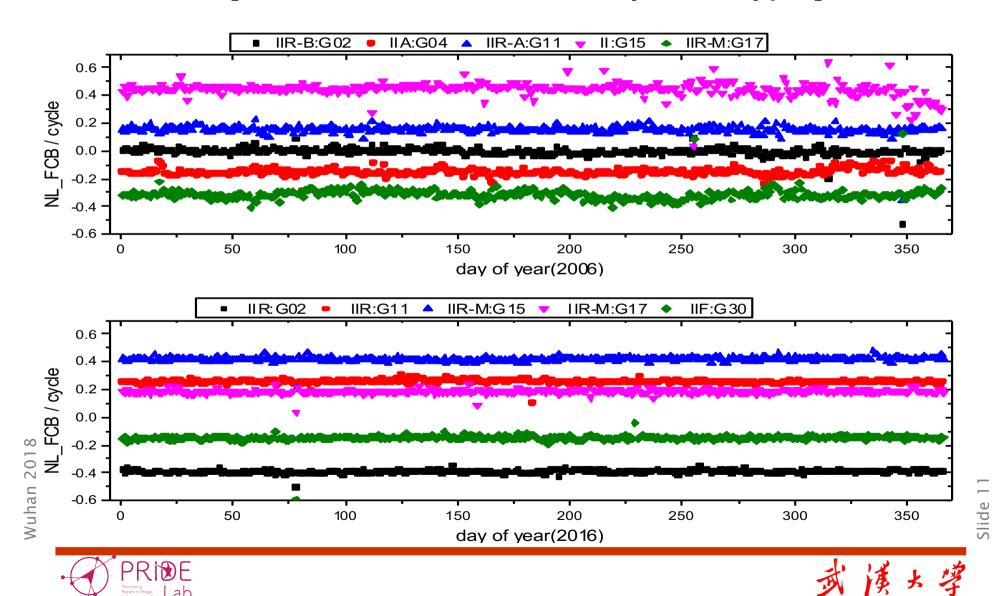
Slide

However, remaining problems with phase biases

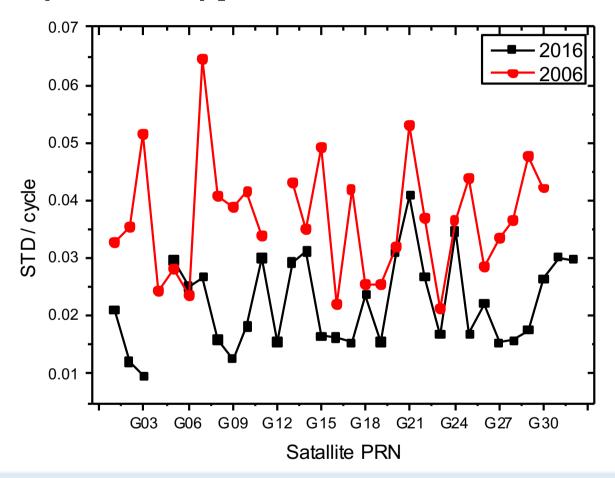
• Discontinuity of our phase biases across days (Day-boundary jumps)


Day-to-day phase bias variations are due to pseudorange again.

Day-boundary jumps: leveling phase biases


• Calculate the jumps using integer clocks and legacy clocks

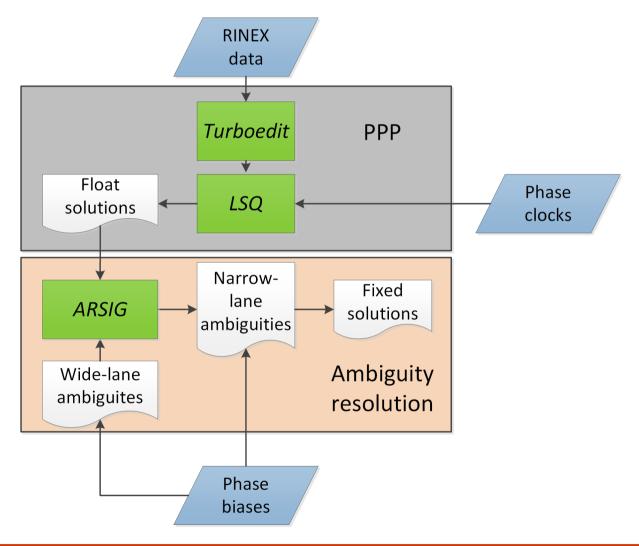
How does the leveling work?


Phase bias products in 2006 & 2016 without day-boundary jumps

Wuhan 2018

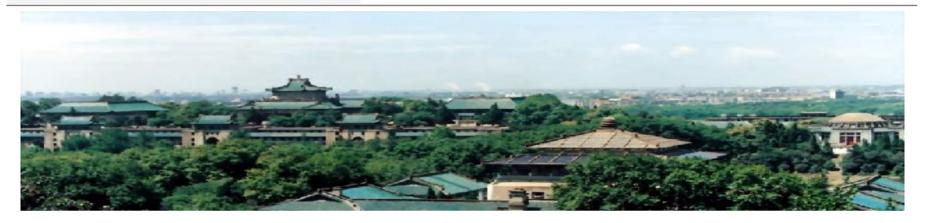
How does the leveling work?

• The yearly STDs of daily phase biases are reduced below 0.1 cycles


The leveling does not impact the positioning performance

Open-source software for undifferenced ambiguity resolution

• Package name: "PRIDE PPP-AR" in Fortran 95


Summary and outlook

- 10-year (2006-2016) GPS phase bias and phase clock products at Wuhan
 - In the form of L1 & L2 biases
 - Under final validation using PRIDE PPP-AR software
 - Preliminary release of products and software before 2019
 - Also include GLONASS DCPBs, BeiDou, Galileo phase bias on the way
 - News on http://pride.whu.edu.cn
- Phase bias products
 - Daily values
 - No day-boundary jumps
- Phase clocks
 - Compatible with IGS code biases
 - Identical performance to "integer clocks"
- Positioning differences from IGS solutions in terms of RMS
 - 1.6mm, 1.8mm and 5.6mm for the east, north and up components
- Remaining questions: how to combine phase products from different ACs?
 - New "PPP-AR WG" for phase biases/phase clocks

Thank you!

Jianghui GENG (耿江辉)

jgeng@whu.edu.cn

Homepage: pride.whu.edu.cn

