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Tropospheric path delays derived from very high-

resolution GNSS-based troposphere models and 

spaceborne SAR interferometry
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Motivation

days  - weeks 

between SAR 

acquisitions

different atmospheric 

conditions, especially 

for water vapor

Source: F. Alshawaf, PhD thesis

tropospheric phases 

may be 

misinterpreted as 

deformations 
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Motivation

• The long-term goal is to use GNSS-derived 

tropospheric path delays to mitigate 

DInSAR images (as a first correction).

• Another possible application is to be able 

to derive tropospheric path delays with 

very high resolution from InSAR images. 

• In the first step, we compare the 

tropospheric delays derived from both 

techniques – GNSS and InSAR from the 

PS (persistent scatterers).

• Specific case in high mountains (high relief 

causing large spatial and temporal 

variability of the atmospheric signals).
source: www.artisansofleisure.com/luxury-travel-blog

source: Wikipedia
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Study area (Alpine region Valais, Switzerland)

5 – 12 GNSS 

permanent stations 

in the area of interest

source: swisstopo

InSAR:

Cosmo-SkyMed

X-band, λ=3.12 cm 

326552 identified 

persistent scatterers

Data period: 

2008 – 2013

32 SAR 

acquisitions 

(June – October)

test area: ~12 km x 25 km

height: 1200 m – 4100 m a.s.m.l.

30.10.2018
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Persistent scatterer interferometry (PSI) 

• The SAR interferometry is essentially

exploiting the phase differences among

two or more SAR images, and estimates

the deformation by extracting the

deformation-related phases among other

phase contributions

• PSI is a state-of-the-art method for 

deformation assessments

• PSI identifies the coherent targets for 

which the atmosphere-induced phase can 

be isolated from other phase components, 

mainly residual topography and deformation

• The natural terrain in alpine regions

generally limits PS behavior (few scatterers)

• PS calculated using IPTA toolbox from 

Gamma software
𝑑𝑆𝑇𝐷𝐼𝑛𝑆𝐴𝑅 = 𝐴𝑃𝐷

𝜆

4𝜋
More info: Siddique MA et al. IEEE TGRS 

(2018) doi.org/10.1109/TGRS.2018.2855101

PS in the test area

https://doi.org/10.1109/TGRS.2018.2855101
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Methodology – GNSS interpolation

 COMEDIE: Least-squares collocation software developed at ETH 

Zürich

 Stochastic and deterministic interpolation and screening of 

meteorological/tropospheric data

 Outline: using software COMEDIE to interpolate ZTDs from the 

GNSS stations to the locations of PS 

6

More about methodology:

Wilgan K et al. J Geod (2017) 91: 117 

doi.org/10.1007/s00190-016-0942-5
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Differential STDs 

from GNSS

𝑑𝑆𝑇𝐷 𝑥, 𝑡 =

= 𝑆𝑇𝐷 𝑥, 𝑡 − 𝑆𝑇𝐷 𝑥, 𝑡𝑚

− 𝑆𝑇𝐷 𝑥𝑟𝑒𝑓 , 𝑡 − 𝑆𝑇𝐷 𝑥𝑟𝑒𝑓 , 𝑡𝑚

𝑆𝑇𝐷 =
1

𝑐𝑜𝑠𝜃
𝑍𝑇𝐷

tm - master acquisition 

(2010-09-20, 17:46:45)

xref - reference point

More about ZTD models in the Alps:

Wilgan K & Geiger A J Geod (2018) 

doi.org/10.1007/s00190-018-1203-6

7

24.5° < 𝜃 < 25.4°
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GNSS vs InSAR – good agreement
R ioa bias SD SD GNSS

0.82 [-] 0.63 [-] -1.2 [mm] 3.2 [mm] 5.5 [mm]
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GNSS vs InSAR – good agreement
R ioa bias SD SD GNSS

0.84 [-] 0.64 [-] -3.0 [mm] 3.2 [mm] 5.4 [mm]
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GNSS vs InSAR – average agreement
R ioa bias SD SD GNSS

0.79 [-] 0.57 [-] 0.0 [mm] 4.0 [mm] 3.2 [mm]
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GNSS vs InSAR – bad agreement
R ioa bias SD SD GNSS

0.51 [-] 0.24 [-] -16.7 [mm] 5.9 [mm] 2.6 [mm]

11
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GNSS vs InSAR – bad agreement
R ioa bias SD SD GNSS

0.07 [-] 0.16 [-] -12.6 [mm] 3.4 [mm] 1.4 [mm]

12
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GNSS vs InSAR – bad agreement
R ioa bias SD SD GNSS

0.29 [-] 0.38 [-] 0.7 [mm] 4.0 [mm] 2.9 [mm]



||IGS Workshop 2018, Wuhan, China 30.10.2018Karina Wilgan et al. 14

Assessment overview

R [-] – Pearson correlation coefficient

IOA [-] – index of agreement 

(Willmott, 1981)

SD [mm] – standard deviation

Bias [mm] – mean error
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ZTDs without topography

Good

agreement

Bad

agreement
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Phase unwrapping error's detection 

3 acquisitions with errors detected!
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Conclusions

• We compared the GNSS and InSAR-derived dSTDs on the PS points 

for 32 InSAR acquisitions

• The highest agreement between GNSS and InSAR is for days of 

varying troposphere 

• For such days, GNSS-based models could be used for mitigating the 

troposphere errors in InSAR

• For days with stable troposphere, the models from InSAR are more 

reliable

• GNSS can also help detecting the phase unwrapping errors
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Thank you! 謝謝 !

Questions? 問題 ?

kwilgan@ethz.ch
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Methodology COMEDIE

𝐶𝑠𝑠 𝑖, 𝑗 =
𝜎0
2

1 +
𝑥𝑖 − 𝑥𝑗
Δ𝑥0

2

+
𝑦𝑖 − 𝑦𝑗
Δ𝑦0

2

+
𝑧𝑖 − 𝑧𝑗
Δ𝑧0

2

+
𝑡𝑖 − 𝑡𝑗
Δ𝑡0

2

∙ 𝑒
−
𝑧𝑖+𝑧𝑗
2𝑧0

stochastic uncorrelated noisen~𝑁 0, 𝐶𝑛𝑛

s~𝑁 0, 𝐶𝑠𝑠 stochastic correlated signal

𝐶𝑛𝑛 diagonal matrix consisting of noise of particular  measurements

𝐶𝑠𝑠 empirically determined covariance function, e.g.: 

Deterministic part (zenith total delay):

Stochastic parts:


