

Tropospheric path delays derived from very highresolution GNSS-based troposphere models and spaceborne SAR interferometry

Karina Wilgan¹, Muhammad Adnan Siddique², Tazio Strozzi³, Alain Geiger¹, Othmar Frey^{2,3}

¹ETH Zürich, Chair of Mathematical and Physical Geodesy, Zürich, Switzerland ²ETH Zürich, Chair of Earth Observation and Remote Sensing, Zürich, Switzerland ³Gamma Remote Sensing, Gümligen, Switzerland

Motivation

Motivation

- The long-term goal is to use GNSS-derived tropospheric path delays to mitigate DInSAR images (as a first correction).
- Another possible application is to be able to derive tropospheric path delays with very high resolution from InSAR images.
- In the first step, we compare the tropospheric delays derived from both techniques – GNSS and InSAR from the PS (persistent scatterers).
- Specific case in high mountains (high relief causing large spatial and temporal variability of the atmospheric signals).

source: Wikipedia

source: www.artisansofleisure.com/luxury-travel-blog

Study area (Alpine region Valais, Switzerland)

Data period: 2008 – 2013

32 SAR acquisitions June – October)

5 – 12 GNSS permanent stations in the area of interest source: swisstopo

InSAR: Cosmo-SkyMed X-band, λ =3.12 cm

326552 identified persistent scatterers

test area: ~12 km x 25 km height: 1200 m – 4100 m a.s.m.l.

Persistent scatterer interferometry (PSI)

Height (m)

PS in the test area

$$dSTD_{InSAR} = APD \frac{\lambda}{4\pi}$$

 The SAR interferometry is essentially exploiting the phase differences among two or more SAR images, and estimates the deformation by extracting the deformation-related phases among other phase contributions

- PSI is a state-of-the-art method for deformation assessments
- PSI identifies the coherent targets for which the atmosphere-induced phase can be isolated from other phase components, mainly residual topography and deformation
- The **natural terrain** in alpine regions generally **limits PS behavior** (few scatterers)
- PS calculated using IPTA toolbox from Gamma software

More info: Siddique MA et al. IEEE TGRS (2018) doi.org/10.1109/TGRS.2018.2855101

Methodology – GNSS interpolation

- COMEDIE: Least-squares collocation software developed at ETH Zürich
- Stochastic and deterministic interpolation and screening of meteorological/tropospheric data
- Outline: using software COMEDIE to interpolate ZTDs from the GNSS stations to the locations of PS

$$l = f(u, x, t) + s(C_{ss}, x, t) + n$$

More about methodology: Wilgan K et al. J Geod (2017) 91: 117 doi.org/10.1007/s00190-016-0942-5

Differential STDs from GNSS

$$STD = \frac{1}{\cos\theta} ZTD \qquad 24$$

$$24.5^{\circ} < heta < 25.4^{\circ}_{46^{\circ}09}$$

$$dSTD(x,t) = = (STD(x,t) - STD(x,t_m)) - (STD(x_{ref},t) - STD(x_{ref},t_m))$$
⁴⁶

t_m - master acquisition (2010-09-20, 17:46:45) x_{ref} - reference point

More about ZTD models in the Alps: Wilgan K & Geiger A J Geod (2018) doi.org/10.1007/s00190-018-1203-6

IGS Workshop 2018, Wuhan, China

GNSS vs InSAR – good agreement

-40

0

dSTD InSAR [mm]

0

dSTD [mm]

0

GNSS vs InSAR – good agreement

dSTD InSAR [mm]

dSTD [mm]

115

110

[± ¹⁰⁵ ≻₁₀₀

95

90 620

50

0

-50 ⊾ -50

dSTD InSAR [mm]

dSTD GNSS [mm]

GNSS vs InSAR – average agreement

dSTD [mm]

GNSS vs InSAR – bad agreement

GNSS vs InSAR – bad agreement

dSTD InSAR [mm]

dSTD [mm]

GNSS vs InSAR – bad agreement

dSTD InSAR [mm]

Assessment overview

	R	ioa	bias	SD	SD GNSS
2011-09-23	0.82	0.63	-1.2	3.2	5.5
2011-10-13	0.84	0.64	-3.0	3.2	5.4
2010-08-19	0.85	0.61	-3.1	3.8	7.1
2012-09-09	0.81	0.58	-2.7	2.8	4.7
2013-10-18	0.80	0.58	0.0	4.0	3.2
2013-07-26	0.80	0.66	-1.0	4.6	7.7
2013-07-10	0.73	0.63	-0.3	4.9	6.5
2011-07-21	0.57	0.39	-4.3	3.2	3.1
2013-08-11	0.69	0.52	-2.7	4.6	5.3
2011-09-27	0.86	0.47	-5.9	3.3	5.4
2013-08-27	0.88	0.40	-7.7	3.2	5.1
2010-08-03	0.43	0.42	-1.9	3.5	3.4
2011-06-03	0.81	0.32	-8.2	3.3	4.8
2012-08-08	0.42	0.43	2.0	4.8	4.8
2013-09-28	0.44	0.44	3.2	4.2	4.4
2012-07-23	0.49	0.48	-3.9	5.8	4.3
2013-08-31	0.49	0.42	-3.8	3.5	3.0
2012-06-05	0.43	0.38	-4.0	3.2	1.7
2010-09-04	0.29	0.38	0.7	4.0	2.9
2012-06-21	0.81	0.32	-11.8	4.4	4.2
2011-09-11	0.88	0.35	-11.7	3.8	6.3
2010-10-06	0.90	0.25	-11.6	3.6	1.8
2010-10-22	0.67	0.24	-10.9	3.3	3.8
2013-09-12	0.44	0.26	-6.3	3.1	2.5
2012-07-07	0.58	0.24	-11.2	3.8	3.0
2011-07-05	0.07	0.16	-12.7	3.4	1.4
2008-09-30	0.51	0.24	-16.7	5.9	2.6
2008-10-16	0.50	0.26	-11.8	4.7	3.5

R [-] – Pearson correlation coefficient

- **IOA** [-] index of agreement
- (Willmott, 1981)
- SD [mm] standard deviation
- Bias [mm] mean error

7	good	R>
8	ok	R>
8	bad	R>
5	very bad	R<
	high GNSS S	SD > 5
	low GNSS S	D<3

R>0.8, ioa>0.6, |bias|<2, SD<3.5 R>0.5, ioa>0.4, |bias|<5, SD<5 R>0.4, ioa>0.3, |bias|<10, SD<6 R<0.4, ioa<0.3, |bias|>10, SD>6

Karina Wilgan et al.		30.10.2018		14
----------------------	--	------------	--	----

ZTDs without topography

20120707 ZTD GNSS no topography [mm]

15

Phase unwrapping error's detection

3 acquisitions with errors detected!

Conclusions

- We compared the GNSS and InSAR-derived dSTDs on the PS points for 32 InSAR acquisitions
- The highest agreement between GNSS and InSAR is for days of varying troposphere
- For such days, GNSS-based models could be used for mitigating the troposphere errors in InSAR
- For days with stable troposphere, the models from InSAR are more reliable
- GNSS can also help detecting the phase unwrapping errors

Thank you! 謝謝! Questions? 問題? kwilgan@ethz.ch

Methodology COMEDIE

Deterministic part (zenith total delay):

 $ZTD(x, y, z, t) = \left(ZTD_0 + a_{ZTD}(x - x_0) + b_{ZTD}(y - y_0) + c_{ZTD}(t - t_0)\right) \cdot \exp\left(-\frac{z}{H_{ZTD}}\right)$ Stochastic parts:

 $n \sim N(0, C_{nn})$ stochastic uncorrelated noise

 C_{nn} diagonal matrix consisting of noise of particular measurements

 $s \sim N(0, C_{ss})$ stochastic correlated signal

 C_{ss} empirically determined covariance function, e.g.:

$$C_{ss}(i,j) = \frac{\sigma_0^2}{1 + \left[\left(\frac{x_i - x_j}{\Delta x_0} \right)^2 + \left(\frac{y_i - y_j}{\Delta y_0} \right)^2 + \left(\frac{z_i - z_j}{\Delta z_0} \right)^2 + \left(\frac{t_i - t_j}{\Delta t_0} \right)^2 \right] \cdot e^{-\frac{z_i + z_j}{2z_0}}$$