IGS Workshop 2018

Optimized Strategies for Precise Orbit Determination of Low Earth Orbiters Based on BDS

Qiang Zhang, Qile Zhao qiangzhang@whu.edu.cn Wuhan University

Monday, October 29, 2018

Introduction for LEO POD Using BDS

Research Points

- Enhance BDS Orbit and Clock (Qile Zhao, 2017; Xingxing Li, 2017; Tian Zeng, 2017; Chao Xiong, 2017)
- FY-3C Precise Orbit Determination (Chao Xiong, 2017; Min Li, 2017)
- BDS GEO Code Multipath Modeling (Kecai Jiang, 2017; Rengui Ruan, 2017)
- Estimation for BDS DCB and Ionosphere (Wenwen Li,2017)

Questions

- LEO POD Using only BDS Data
- The Contribution of BDS GEO in LEO POD
- The Impact of BDS Orbit Daily Jumps

Introduction for FY-3C Satellite

Artistic Illustration of FY-3C

Item	Description
Launched Date	Sep 23, 2013
Orbit Type	Sun-synchronous near- circular orbit
Average Altitude	836 km
Inclination	98.75 degrees
Period	101.49 minutes

Architecture of GNOS receiver

ltem	Description
Developer	Center for Space Science and Applied Research
System	GPS+BDS
Frequency	GPS: L1 L2 BDS: B1 B2

Basic FY-3C POD Configuration Using BDS

Dynamic Models

ltem	Description
Earth gravity	EIGEN_06C, 100 degrees
Solid Earth Tides	IERS 2010
Ocean tides	FES2012, 30 degrees
Relativistic effects	IERS 2010
Atmospheric drag	Box-Wing model, DTM94 model
Solar radiation	Box-Wing model
Third body gravity	Solar system celestial bodies, DE421
Estimated parameters	Initial position and velocity; Atmospheric drag coefficients, 6 hours ; Empirical accelerations acting on along-track and cross-track, 6 hours

Observation Models

ltem	Description
POD arc length	24 or 36 hours
Observation selection	Ionosphere-free combination
BDS orbit and clock	GBM or WUM
BDS PCO&PCV	IGS14.atx
Phase wind-up	Corrected
Observation interval	30 s
Cut-off elevation	Accept all available
	observations
Observation weighting	Equal, weight 40000:1
Satellite attitude	Nominal attitude mode
	Antenna PCO in Z;
Estimated parameters	Receiver clock bias;
	Phase ambiguity bias

Characteristics of BDS GEO Orbit Oroducts

Orbit differences for BDS GEO between the GBM and WUM orbit products

BDS GEO Phase Observation Equation

 $\rho(t_r, t^s) = \rho(\mathbf{r_0}, \mathbf{v_0}, \mathbf{p}, \mathbf{PCO}, \delta t(t_r), AMB, \mathbf{dA}, \mathbf{dC}, \mathbf{dR})$

8

FY-3C POD Strategies

≻Solution A

Exclude BDS GEO roughly.

➢ Solution B

Include BDS GEO and apply GEO orbit along-track and cross-track biases calibration.

Assessment of BDS-derived FY-3C Orbit

Daily RMS series of orbit differences between BDS-derived and GPS-derived FY-3C orbit

Average daily RMS of orbit differences for FY-3C POD using only BDS (unit: cm)

Category	Along-Track	Cross-Track	Radial	3D
Solution A	6.4	3.3	2.6	7.8
Solution B	5.0	3.0	2.0	6.2

DBDs of Calibrated GEO Orbit Products

RMS of Daily boundary discontinuities (DBDs) for GEO original and calibrated orbit products

LEO BDS Antenna PCV Calibration

PCV Estimation Using Residuals Method Comparison Between Two PCV Maps

Estimation of PCV

- GPS PCV, grid space is 5°
- BDS PCV, grid space is 5°

Impact of PCV on POD

- BDS data + GPS-derived PCV
- BDS data + BDS-derived PCV

90

LEO BDS Antenna PCV Calibration

FY-3C Orbit with Different PCV Maps

Daily RMS of FY-3C orbit precision using PCV from BDS and GPS observations, respectively

FY-3C orbit precision with three different PCV using only BDS data

Stratogy	Average RMS of daily orbit differences (cm)					
Strategy	Along-track	Cross-track	Radial	3D		
No PCV	5.0	3.0	2.0	6.2		
BDS PCV	4.3	2.6	1.7	5.4		
GPS PCV	4.6	2.7	1.8	5.7		

Statistics of BDS Orbit Daily Jumps

Average of the orbit daily jumps for the WUM BDS orbit products

Maximum, minimum and average of the orbit daily jumps for the WUM BDS orbit products

	Statistics of Orbit Daily jumps (m)						
Satellite Type	Along-track	Cross-track	Radial	3D			
	Max / Min / Mean	Max / Min / Mean	Max / Min / Mean	Max / Min / Mean			
GEO	5.49 / 0.03 / 0.67	3.92 / 0.03 / 0.71	1.83/0.14/0.72	6.85 / 0.20 / 1.37			
IGSO	0.42 / 0.00 / 0.11	0.78 / 0.00 / 0.10	0.91/0.01/0.23	1.22 / 0.03 / 0.30			
MEO	0.42 / 0.00 / 0.14	0.21/0.00/0.05	0.15 / 0.00 / 0.05	0.44 / 0.02 / 0.17			

FY-3C POD Strategies

➢Solution 1

24 hours using original BDS orbit products

Solution 2

36 hours using original BDS orbit products

➢ Solution 3

24 hours using fitted BDS orbit products

➢ Solution 4

36 hours using fitted BDS orbit products

Impact of Arc Length on FY-3C POD

Daily RMS of FY-3C orbit precision using two different strategies based on WUM products

FY-3C orbit precision using four different strategies based on BDS only

Strategy	Exclude GEO (cm)			Include GEO (cm)				
	А	С	R	3D	А	С	R	3D
24 h ORG	8.3	4.5	3.2	10.1	7.9	6.4	3.2	10.9
36 h ORG	6.2	3.5	2.5	7.7	5.8	4.7	2.2	8.0
24 h FIT	4.9	2.6	1.9	5.9	4.5	2.6	1.8	5.6
36 h FIT	4.4	2.3	1.7	5.3	3.9	2.4	1.5	4.9

FY-3C POD Using Combination of BDS Satellite Type

Average and STD of daily RMS for FY-3C orbit precision using BDS satellite type combination

Combination	Mean and STD of Daily RMS (cm)						
of BDS	А	С	R	3D			
GEO+IGSO	8.3±2.0	4.8±1.9	3.2±0.8	10.2±2.4			
GEO+MEO	8.9±3.2	4.0±0.9	3.5±1.4	10.4±3.4			
IGSO+MEO	4.4±1.1	2.3±0.9	1.7±0.5	5.3±1.3			
ALL	4.0±1.1	2.4±0.6	1.5±0.4	5.0±1.0			

- Contribution of GEO is very small
- IGSO+MEO maybe the best choice

Daily RMS of FY-3C orbit precision using combination of BDS GEO, IGSO and MEO

Conclusion, Discussion and Forecast

Conclusion

- Calibrate BDS GEO orbit biases is practicable
- Achieve cm level FY-3C orbit using only BDS
- PCV is consistent between GPS and BDS
- Reduce the influence of daily jumps in BDS orbit products

Discussion

- More BDS observations
- More precise BDS orbit and clock products
- POD for other missions

Future work

- GPS+BDS integration
- Variance component estimation
- Integer ambiguity resolution

Thanks for your attention!