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Anatomy of GNSS station position time series

Linear trend:

Tectonic motions
Post-glacial rebound

Discontinuities:

Co-seismic displacements
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Anatomy of GNSS station position time series

° Linear trend: FALE (Faleolo, Samoan Islands)

2000 2004 2008 2012
L L | L

— Tectonic motions 50 mm

— Post-glacial rebound o5 mm u
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 Discontinuities:

— Co-seismic displacements
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— Equipment changes
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— (Visco-)elastic rebound due to current 50 mm
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Anatomy of GNSS station position time series

FALE (Faleclo, Samoan Islands) — Residuals Residuals periodogram
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Anatomy of GNSS station position time series

Average periodogram over 1066 stations
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Anatomy of GNSS station position time series

e Seasonal signals: Average periodogram over 1066 stations

Solar year harmonics

— Loading deformation

— Thermal deformation of the ground
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Anatomy of GNSS station position time series

e Seasonal signals: Average periodogram over 1066 stations

_ Loading deformation GPS draconitic year harmonics

— Thermal deformation of the ground I | '

and the monuments
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* Draconitic signals: ot /‘ A
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— Orbit modelling errors
— Multipath
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Anatomy of GNSS station position time series

e Seasonal signals: Average periodogram over 1066 stations
— Loading deformation - 14|]]days
— Thermal deformation of the ground I | | '
and the monuments
East
- .o 102 .
* Draconitic signals: R [ /\ A
— Orbit modelling errors § A v V\Jﬁ :
— Multipath g \J
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Anatomy of GNSS station position time series

Seasonal signals:

— Loading deformation

— Thermal deformation of the ground
and the monuments

Draconitic signals:

— Orbit modelling errors
— Multipath

Fortnightly signals:

— Tide modelling errors

Background noise:

— Flicker noise
— Some white noise at high frequencies

Average periodogram over 1066 stations
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Anatomy of GNSS station position time series

Flicker noise: Average periodogram over 1066 stations
— Identified =20 years ago

— Has since then remained the
preferred model for time-correlated

noise in GNSS time series 102 -

— Needs to be taken into account when
interpreting GNSS time series to
avoid, e.g., underestimating trend

errors by factors 5 - 10 10" 4.

Where does it come from?

— Different origins proposed, including
geophysical effects and
technique/modelling errors

10° 1

normalized spectral power

— But none actually identified that 1071 -
could explain the level of observed AN
. . O‘ \\
flicker noise RN
NN

-> The origins of flicker noise in GNSS ZAAN
o . . -2 ] |
time series remain unclear. 0
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What about GRACE-derived EWH time series?

* Use monthly regularized
GRACE solutions: .

— JPL-RLO5 mascon solution — JPL mascon
— CSR-RLO5 mascon solution — CSR mascon

. — GSFC mascon
— GSFC-v02.4 mascon solution — GRGS SH

107"

— GRGS-RLO4 spherical harmonics solution

* Restore atmospheric and
oceanic dealiasing products

1072 1

spectral power [m?]

* Compute average

periodogram of EWH time m

series over the Earth’s surface

— accouting for periodic gaps in EWH 107 1
time series

1 I

0.2 05 1
frequency [cpy]

11



What about GRACE-derived EWH time series?

e Seasonal signals:

— Seasonal surface mass transport

spectral power [m?]
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Solar year harmonics

12



What about GRACE-derived EWH time series?

e Seasonal signals:

— Seasonal surface mass transport

161 days

— JPL mascon
: . — CSR mascon
* 161-day signal: et
— Aliasing of S, tide model errors 01 | — GRGSSH

— Absent from GSFC mascon solution (?)
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What about GRACE-derived EWH time series?

e Seasonal signals:

— Seasonal surface mass transport

— JPL mascon
. . — CSR mascon
e 161-day signal:  GSRC mascon
— Aliasing of S, tide model errors 0.1l | — GRGSSH i

— Absent from GSFC mascon solution

t
* Average background noise: :
—— Flicker noise g
— Possibly some white noise at highest g
frequencies L
w

» NN Errors in GRACE

o ~ solutions?

? Real, aperiodic surface

° mass transport signal?

frequency [cpy]
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Distribution of « noise » in GRACE EWH time series

* Processing:
— Average all solutions over JPL mascons for comparability
— Remove trend and periodic signals from EWH time series
— Plot RMS of residual EWH variations (i.e., amplitude of background noise)

JPL mascon CSR mascon
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Distribution of « noise » in GRACE EWH time series

* Observations:
— Distribution of « noise » follows distribution of expected surface mass transport signal
— Mascon solutions « cleaner » than GRGS SH solution
— GSFC regularization > CSR regularization > JPL regularization

JPL mascon CSR mascon
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Correlation of « noise » between GRACE solutions

JPL mascon vs. CSR mascon JPL mascon vs. GSFC mascon JPL mascon vs. GRGS SH

— « Noise » well correlated
among GRACE solutions,
esp. in areas of expected
surface mass transport signal 10 05 00 0.5 10

-> Background noise in GRACE EWH time series is mostly
real, aperiodic surface mass transport signal.

- How much of flicker noise in GNSS time series can be
explained by loading deformation under aperiodic
surface mass transport observed by GRACE?
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GNSS vs. GRACE: data & processing

GNSS:

Residuals from an ITRF2014-like long-term stacking of the daily IGS repro2 solutions
Residuals averaged over monthly intervals
Estimated annual and semi-annual signals restored

GRACE:

Monthly JPL-RLO5 mascon and GRGS-RL04 SH solutions
Co- and post-seismic effects removed

Atmospheric and oceanic dealiasing products restored
Degree-1 removed

Converted into loading displacements at GNSS stations using PREM-based
elastic load Love humbers / Green’s functions

Degree 1 & Reference Frame:

Every month, form the difference between GNSS and GRACE deformation fields

Estimate {translation + rotation + degree 1 deformation field} from the GNSS — GRACE
differences

Remove {translation + rotation + degree 1 deformation field} from GNSS displacements
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Time series example: BOR1 (Borowiec, Poland)

With periodic signals Without periodic signals
— GNSS residuals
2 (corrected for 2
: A/\ /{M /\ degree 1 & RF)
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Time series example: MAPA (Macapa, Brazil)

With periodic signals Without periodic signals

— GNSS residuals

: I NX

— (corrected for
- degree 1 & RF) 1 m !
— GRACE-derived Y WW W‘VV Vi
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GNSS / GRACE(JPL) noise correlation

— East correlation
—| = N (mean = 0.15)

]_ I — North correlation
. (mean =0.22)

I _IJ_H — Up correlation
- (mean = 0.48)
L
! |

0.0 0.5 1.0

Correlation coefficients between GNSS residual time series (corrected for degree 1 and RF effects)
and GRACE-derived loading deformation time series, after having removed periodic signals from both
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Relative variance reduction of GNSS noise

100 & — East variance
reduction
(mean = 0.4%)

|_ — North variance
reduction
(mean =4.6%)

[ — Up variance reduction
L‘_‘—L (mean = 22.9%)

-50 % 0 % 50 % 100 %

Relative variance reduction between background noise in “raw” GNSS residual time series
and background noise in GNSS residual time series corrected from GRACE(JPL)-derived loading displacements
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Spatial correlation of GNSS noise

Without GRACE corrections With GRACE corrections
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Summary & Conclusions

Background noise in regularized GRACE solutions:
— has flicker behavior in average,
— follows geographical distribution of expected surface mass transport signal,
— is highly correlated between different GRACE solutions,
-> is mostly real, aperiodic surface mass transport signal.

Loading deformation under aperiodic surface mass transport
observed by GRACE:

— shows significant correlations with background noise in GNSS time series,
— explains >20% of GNSS background noise in vertical / a few % in horizontal,
— contributes to spatial correlation of GNSS background noise in vertical.

Remaining (non-loading) GNSS background noise:

— is still partially spatially correlated,

- must result from both spatially correlated and spatially uncorrelated processes,
which remain to be identified.

— Similar situation as for non-loading seasonal variations in GNSS time series
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