IGS Workshop 2018

29 October to 2 November

Wuhan, China

Multi-GNSS through Global Collaboration

Felix Perosanz, Sylvain Loyer, Georgia Katsigianni, Flavien Mercier, Laetitia Versini

GÉOSCIENCES ENVIRONNEMENT TOULOUSE

Introduction

The CNES-CLS IGS Analysis center:

- uses the Integer Recovery Clock (IRC) approach
- to processed un-differentiated iono-free phase observation
- and fix ambiguities to integer values for GPS L1, L2 measurements

We have investigated the capability to apply this methodology to Galileo E1,E5A

In this presentation:

- remind the two steps procedure to fix ambiguities (two frequencies approach)
- evaluate the stability of the Galileo satellite "hardware" biases
- present Galileo results: ambiguity success rate, clocks and orbits products consistency
- discuss potential applications and perspectives

if possible solve N_{WL}

Melbourne-Wübbena Linear Combination

$$\mathsf{MW} = \left(\frac{f_i}{f_i - f_j} L_i - \frac{f_j}{f_i - f_j} L_j\right) - \left(\frac{f_i}{f_i + f_j} P_i + \frac{f_j}{f_i + f_j} P_j\right)$$

(Lover. et al., 2012)

 $= \lambda_{WL}(N_{WL} + WSB - WRB)$

N_{WL} : Wide-Lane ambiguity WSB: WL Satellite Bias WRB: WL Receiver Bias

 $N_{WL} = N_j - N_i$

NWL, WSB and WRB are 100% correlated

Ambiguity fixing: step1

P,L: Range and phase observations f_i , f_j : L_i and L_j frequencies λ_{WL} : Wide-Lane wavelength $\lambda_{WL} = c/(f_i - f_j)$

GNSS	λ_{WL} (m)
GPS (<i>L</i> 1, <i>L</i> 2)	0.862
Galileo (<i>E</i> 1 , <i>E</i> 5 <i>a</i>)	0.751

4

Iono-free Linear Combination

$$\begin{split} L_{IF} &= \kappa_i L_i + \kappa_j L_j \\ &= \rho + \Delta h_L + \lambda_{NL} W - \lambda_{NL} N_i - \kappa_j \lambda_j N_{WL} \end{split}$$

The precision on ρ (orbit and station coordinates) is critical

→ solve for N_i → hence also solving for N_j (N_{WL} = N_j - N_i)

Ambiguity fixing: step2

 L_{IF} : phase lono-free LC

 κ_i , κ_j - iono-free coefficients

$$\kappa_{i} = rac{f_{i}^{2}}{f_{i}^{2} - f_{j}^{2}}$$
 , $\kappa_{j} = rac{-f_{j}^{2}}{f_{i}^{2} - f_{j}^{2}}$

 ρ : geometric distance

 $\lambda_{NL}\text{-}$ Narrow-Lane wavelength

 $N_{WL}\mbox{-}$ Wide-Lane ambiguity from step 1

GNSS	$\lambda_{\rm NL}$ (m)
GPS (<i>L</i> 1, <i>L</i> 2)	0.107
Galileo (<i>E</i> 1, <i>E</i> 5 <i>a</i>)	0.109

Galileo WSB measurement (1/2)

E01 E02 E08

E09 E11 E12

E14 E18

E19 E22 E24

E26

E30

Forming MW per epoch and per satellite from station USN8 :

- WSB are stable (<< 1 WL cycle)
- mean fractional values can be calculated

per pass

Galileo WSB measurement (2/2)

- Left: WSB per passes are stable even over 50 days
- Right: consistency of WSB between receiver manufacturers is below 0,1 cycle

Conclusion: fixing WL ambiguities with Galileo must me feasible

Galileo Wide-Lane ambiguities fixing

Galileo Narrow-Lane ambiguities fixing

- Success rates of AR for Nov. 2017 GPS+Galileo data processed simultaneously Common receiver clock bias + inter-system biais
- Average success rates:
- 96% for GPS
- 93% for Galileo

DOY

GPS + Galileo "Integer" clock solutions

Galileo orbit overlap consistency

- 3D-RMS position comparison per satellite and per day (4 weeks from 2018/09/09)
- Fixing ambiguities clearly improves the orbit solution (down to 6 cm 3D-RMS)¹

Using "Integer" clocks (some GPS results)

- IPPP static and cinematic positioning (e.g. Barbu et al. 2018, ASR)
 - High accuracy even on remote stations
 - short CPU and easy to process in parallel
- Comparing atomic clocks frequency (e.g.. Petit et al. 2015, Metrologia)
 - Even if the clocks are distant
 - Continuity at arc boundaries ensured by overlapping passes with identical ambiguities: frequency comparison over months !
 - Could improve TAI time scale realization?
- Tracking LEO satellites (e.g. Montenbruck et al. 2018, JoG)
 - Without involving a ground network
 - Already TUM, ESA, CODE have successful results

... awaiting results based/including Galileo data !

- GRM CNES-CLS Galileo Integer clocks are delivered to MGEX since week 2022
- In the frame of REPRO-3 effort, CNES-CLS will provide "integer" clocks and WSB

✓ from may 2000 for GPS

✓ from 2014 (TBC) for Galileo

- Fixing un-differenced Galileo ambiguities is more and more accessible
- This is also true for Beidou (e.g. X. Li et al. 2018, JoG)
- What about producing combined clocks and biases from different ACs which

keep the "integer" nature of phase ambiguities ?

Should deserve an IGS Working Group ?

Posters:

More information in...

- G. Katsigianni et al. Improving Galileo orbit determination using zero-difference ambiguity resolution in a Multi-GNSS processing
- S. Loyer et al. CNES/CLS IGS Analysis center: recent activities

References:

- Katsigianni, G., Loyer S., Perosanz F., Mercier F., R. Zajdel, K. Sosnica, Improving Galileo orbit determination using zerodifference ambiguity fixing in a Multi-GNSS processing. Adv. Space Res. (2018),
- Barbu A., Laurent-Varin J., Perosanz F., Mercier F. and Marty JC., Efficient QR Sequential Least Square algorithm for high frequency GNSS Precise Point Positioning seismic application, Adv. Space Res. (2018)
- Montenbruck, O., Hackel, S. & Jäggi, A., Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguityfixed GPS carrier phase observations. Journal of Geodesy (2018)
- Li, X., Li, X., Yuan, Y. et al. Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo. J Geod (2018)
- Petit, G., A. Kanj, S. Loyer, J. Delporte, F. Mercier and F. Perosanz. 1 × 10–16 frequency transfer by GPS PPP with integer ambiguity resolution. Metrologia (2015)
- Loyer, S., Perosanz, F., Mercier, F., Capdeville, H. and Marty, J. C. Zero-difference GPS ambiguity resolution at CNES-CLS IGS Analysis Center. Journal of Geodesy (2012)

BONUS Slides

Narrow-Lane Fixing

• SLR residuals

- SLR sensitive to radial direction
- overall St.dev. is lower 5mm for fixed solution (15%)
- Fixing ambiguities has a limited impact on the radial direction

results through GOVUS online service Zajdel, R., Sośnica, K., & Bury, G. (2017). A new online service for the validation of Multi-GNSS orbits using SLR. Remote Sensing 9(10), 1049. doi:10.3390/rs9101049

Narrow-Lane Fixing

Example of orbit overlaps (doy: 297/2017 – 298/2017):

• 1 month period overlaps

	Float (cm)	Fixed (cm)
Radial	3.2	3.2
Normal	5.4	4.4
Along	5.6	4.1
3D	7.8	6.1

Wide-Lane Fixing

Comparison of WSB biases organized by receiver manufacturers

Galileo below 0,08 cycles

(Katsigianni, et al., 2018)

GPS and Galileo WSB from a global network

- No impact
- WSB a-priori taken from the day before
- WSB a-priori are stable unless they change

GPS and Galileo WSB from a global network

• WSB a-priori taken from the day before

• WSB a-priori are stable unless they change

Narrow-Lane Fixing

Orbit overlaps for Float and Fixed solution DOY 297-298

- along, normal improvements
- very small for radial

3D RMS ~6cm

(Katsigianni, et al., 2018)

Wide-Lane Fixing

Histograms of WSB for IOV and FOC satellites

-symmetric single peaked and bell-shaped distributions -small difference between IOV and FOC due to different manufacturers