

## Assessment and Application of BeiDou Wuhan, China Real-Time Orbit and Clock Products<sup>29</sup> October to 2 November

Yishuai Shi\*, Jinming Hao, Weiping Liu, Bo Jiao, Hui Zhang and Baofeng Song Institute of Geospatial Information, Information Engineering University, Zhengzhou, China, \*shiyishuai@qq.com

## Introduction

In recent years, Real-Time Precise Point Positioning (RTPPP) using BeiDou Navigation Satellite System (BDS) is facing new developments thanks to the dissemination of BDS real-time State Space Representation (SSR) corrections provided by some institutions. In this contribution, the quality of BDS real-time products provided by CNES, as well as the performance of BDS standalone RTPPP and BDS/GPS combined RTPPP, are assessed and validated.

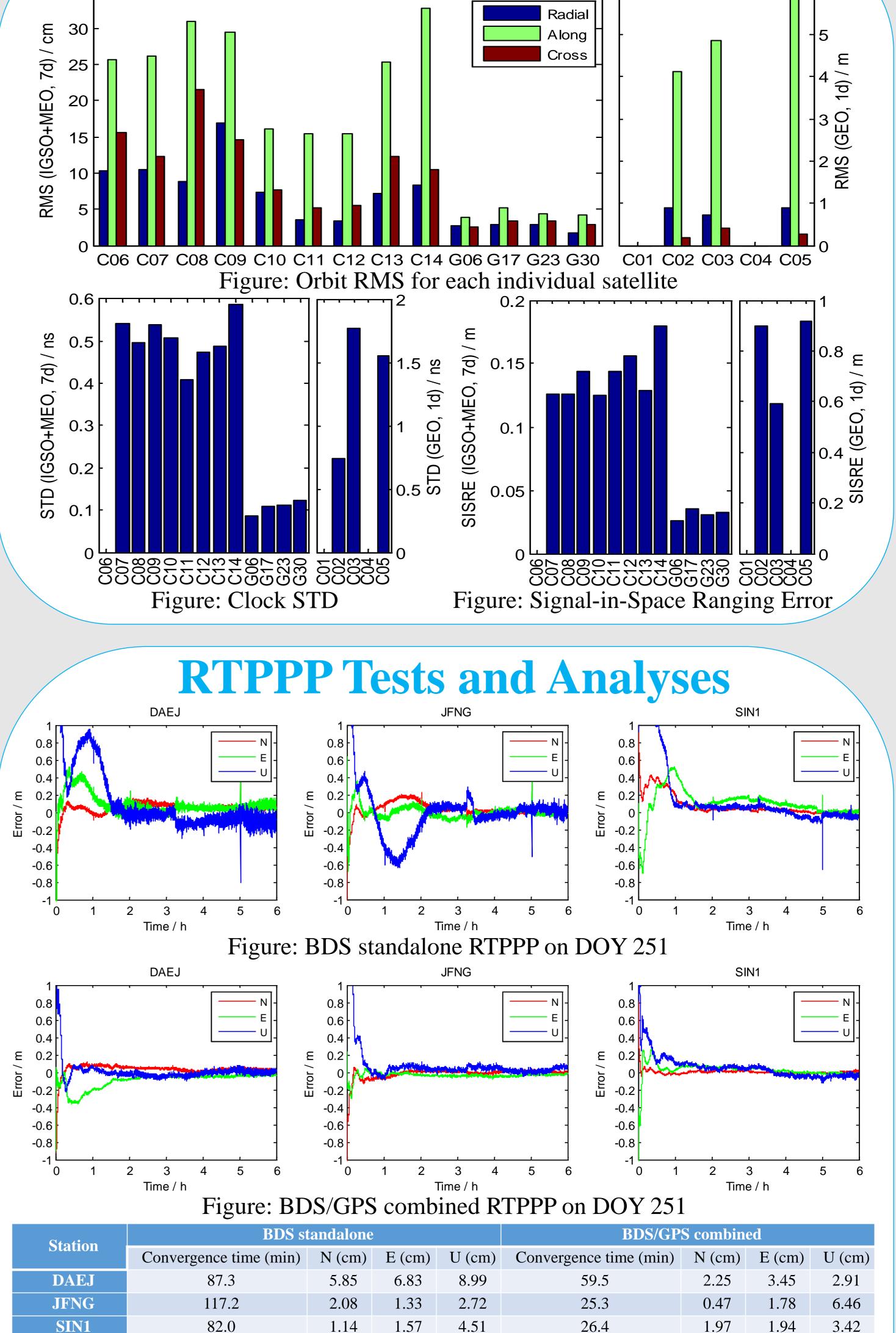
#### **Assessment of BDS Real-Time Products**

| <b>3.</b> A | ccur | acy |   |     |   |     |   |   |   |
|-------------|------|-----|---|-----|---|-----|---|---|---|
| 35          |      | I   | I | 1 1 | I | I I | L | L | - |

# 1. Availability

|            |                | I              | 1 1            |           | l      | 1 1        |        |
|------------|----------------|----------------|----------------|-----------|--------|------------|--------|
| C01        |                |                |                |           |        |            |        |
| C02 -      |                |                |                |           |        |            | -      |
| C03 - • •  |                |                |                | • ••• •   | • •    | ••• •      | •      |
| C04<br>C05 |                |                |                |           |        | ••••       |        |
| C06 - •    |                |                |                |           |        | •••        |        |
| C07 - •    |                |                |                | • • • •   | • •    |            | •••    |
| C08 -      |                |                |                | • ••• •   | • •    |            | • •    |
| C09 • • •  |                | •••••••        |                | • • • •   | •• •   | ••• •      | • •    |
| C10 - • •  |                | • • • • • •    |                | • • • •   | • •    | • • • •    | • •    |
| C11 - •    |                | • • • • • •    | •••••          | • • • •   | • •    | ••• ••     | • •    |
| C12 - •    |                | • •• •• •• •   | •• •••         | • • • •   | • •    | ••• •      | •      |
| C13 - •    |                | ••••••         | •• • •••       | • • • •   | • •    | ••• •      | •      |
| C14 - •    | • • • •        | ••••••         | •• •• •••      | • • • •   | • •    | •••••      | • •    |
| G06 - •    | $\bigcirc$     | • ••••         | • • •          | • • • • • | • •    | ••• •      | •      |
| G17 - •    |                | • ••••         | • • •          | • • • •   | • •    | ••• •      | •      |
| G23 -      |                | • • • • •      | • • •          | • • • • • | • ••   | ••• •      | •      |
| G30 - , •  |                | • ••••         | • • •          |           | • •    | ••• •      | , •    |
| 0 12       | 0 12 0         | 12             | 0 12           | 0 12      | 0      | 12 0       | 12 0   |
| DOY251     | DOY252         | 0 12<br>DOY253 | 0 12<br>DOY254 | DOY2      | 55 Č C | DOY256     | DOY257 |
| Figuro. I  | Inovoilability | r of roal ti   | ma appropria   | na durin  |        | 251 257 ;  | -2017  |
| e          | •              |                | me correctio   |           | g DO I | 231-237 II | 1 2017 |
| Four types | of unavail     | ability:       |                |           |        |            |        |
|            |                |                |                |           |        |            |        |

(1) all satellites unavailable at some epochs (e.g. the rectangle area)

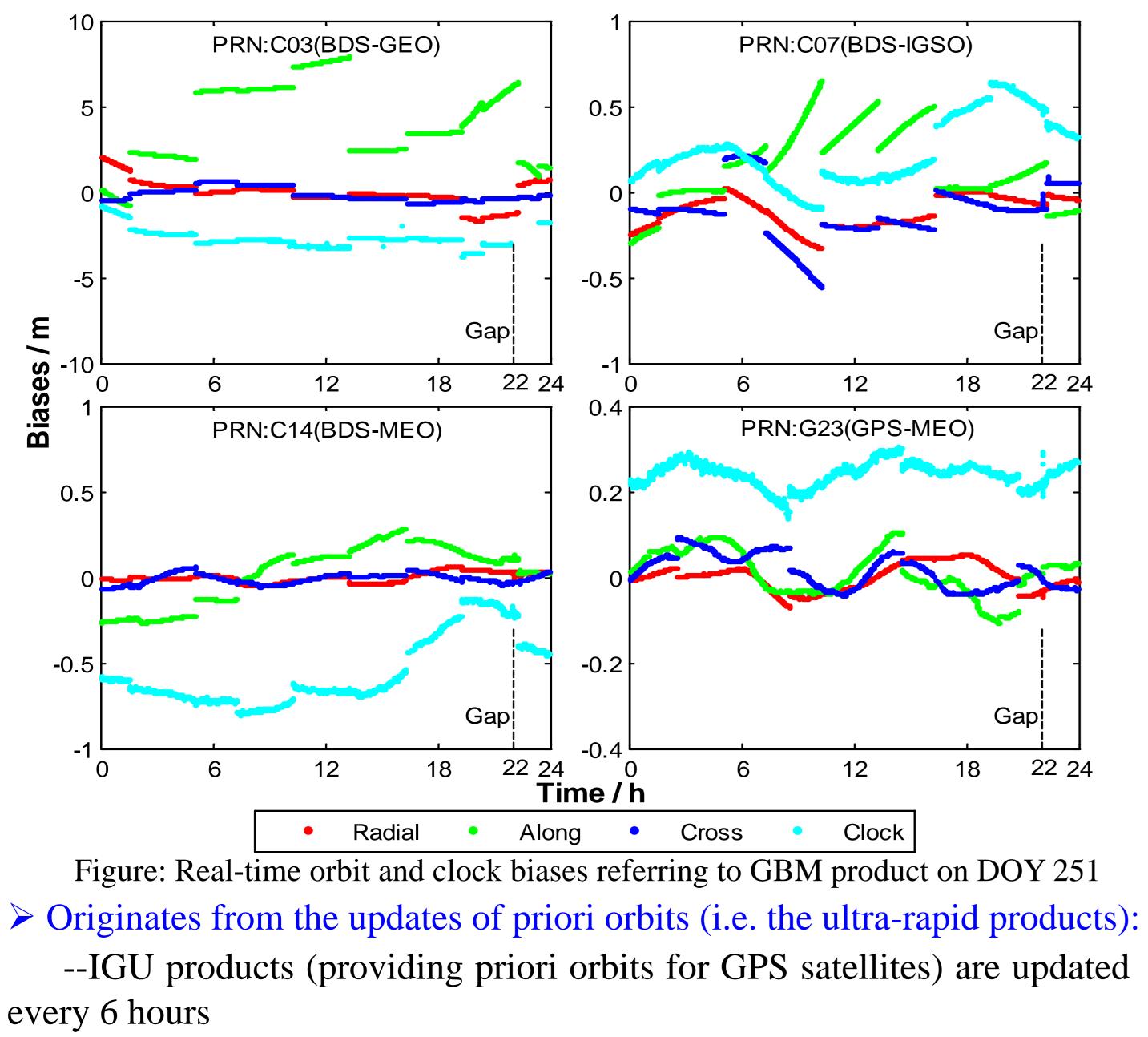

--mainly originates from network outages on the user or caster side

(2) all BDS satellites unavailable at some epochs (e.g. the oval area)

--may refer to the outage of BDS priori orbits

(3) temporarily unavailable for some certain satellites

--may refer to the failure of processing chain or lack of tracking




stations on the ground

(4) long-term unavailable for some certain satellites (mainly BDS-GEO)--directly refer to the outage of GEO priori orbits in the BDS ultrarapid products

--intrinsically refer to the inherent difficulties for predicting the GEO orbits and the scheduled maneuvers

### 2. Continuity



#### **BDS** standalone RTPPP in kinematic mode:

3.02

--the positioning errors in the north, east and up components can all remain within 0.2 m after a period of convergence

5.41

37.1

3.24

2.39

4.26

1.56

--GBU products (providing priori orbits for BDS satellites) are updated every 3 hours

may bring about some jumps and re-convergences to BDS standalone kinematic positioning results

--there exist high-frequency noises and some jumps in the positioning errors, which are related to the unstable quality of BDS real-time products

#### > BDS/GPS combined RTPPP in kinematic mode:

--accelerate the convergence

95.6

--improve the accuracy

Mean

--remove the outliers and smooth the curve of positioning errors

### Conclusions

(1) BDS standalone RTPPP can provide an accuracy of decimeter- to centimeter-level after convergence, but suffers from the issues of unavailability and discontinuity at some time.

(2) BDS/GPS combined RTPPP can improve the convergence speed, accuracy and stability.