Sub 10⁻¹⁶ frequency transfer with IPPP

G. Petit

Bureau International des Poids et Mesures

S. Loyer

CLS

F. Perosanz

Centre National d'Etudes Spatiales

IGS Workshop 3-7 July 2017

METPA

What needs to be achieved to compare clocks at a distance? In terms of frequency accuracy \equiv time stability

- PPP with integer ambiguity resolution (IPPP): reminder
- Comparisons of IPPP with other links
- Conclusions and outlook

IPPP: PPP with integer ambiguity resolution

- Phase clocks are ambiguous and need to be aligned to ensure continuous PPP results.
- Taking into account the **integer nature of the ambiguities** allows, in principle, to rigorously solve the problem of boundary discontinuities.

–For integer ambiguities solutions, such discontinuities should be integer numbers of the "Narrowlane wavelength" λ_c (357 ps) and can be exactly determined.

- Products of the GRG analysis center of the IGS, see : <u>www.igsac-cnes.cls.fr</u>):
 - wide-lane satellite biases : WSB, file grgxxxx.wsb
 - phase clocks : clocks, file grgxxxxx.clk
- User then take these GRG products to determine integer ambiguities in the PPP solution (IPPP), e.g. with the GINS software developed by CNES.

- IPPP: Two-step procedure, where the ambiguities at the two frequencies N_1/N_2 are determined as the Widelane $N_w = N_2 N_1$ and e.g. N_1
 - 1. Zero-difference widelane identification $=> N_w$
 - 2. Ambiguity fixing in the Zero-difference iono-free phase equation $=> N_1$

GNSS & Science 30/05/2017

Zero-difference widelane identification

Step 1 = Determine N_w (Widelane wavelength $\lambda_w = 86.19$ cm)

Ambiguity fixing method in zero-difference iono-free phase equation

Step 2 = iono-free phase solution with integer N₁ (Narrowlane wavelength $\lambda_c = 10.69$ cm)

IGS Workshop 3-7 July 2017

Step 3: Remove discontinuities between batches for a link

- When forming a link, problems with the GRG reference vanish and receiver clock differences are defined up to an overall unknown number of cycles of λ_c.
 Discontinuities between batches should be integer multiples of λ_c.
- Two techniques to connect non-overlapping batches;
 - Extrapolation, assuming the stability of the compared clocks is sufficient

- Bridging, assuming another time link solution exists to bridge the discontinuity.

Advantage: Step 3 takes care of all discontinuities: between daily batches but also due of other interruptions (not breaking the phase continuity), if they are recognized!

- PPP with integer ambiguity resolution (IPPP): reminder
- Comparisons of IPPP with other links
- Conclusions and outlook

Test of IPPP vs. 420-km fibre link

- Fibre link technology developed at AGH Univ. Stable ~10⁻¹⁷ region @ τ =1 day
- UTC(AOS)-UTC(GUM) fibre link and Rinex files reported to the BIPM.
- Basis of first successful test of IPPP
 See Metrologia 2015, 52, 301-309

Automore 39 (2013) 130-149 Dissemination of time and RF frequency via a stabilized fibre optic distance of 420 km Lukasz Śliwczyński¹, Przemysław Krehlik¹, Albin Czubla², Lukasz Śliwczyński¹, Przemysław Krehlik¹, Albin Czubla², Lukasz Buczek¹ and Marcin Lipiński¹ ¹ AGH University of Science and Technology, Kesków, Poland ² Central Office of Measures, Time and Progency Laboratory, Warsaw, Poland

METROLOGY.

IOP PUBLISHES

IPPP and PPP vs. 420-km fibre link: best result

- Computation passed to "operational mode" in December 2015
- Longest continuous solution: 104 days
- (IPPP Fibre) crosses 1×10^{-16} at about 4 day averaging, low 10^{-17} at > 10 days
- (IPPP Fibre) frequency difference 2.1×10^{-17} .
- Classical PPP limited ~ $2-3x10^{-16}$

IPPP vs TW Software Defined Receiver

- TW SDR more stable than classical TW
- Example with TL-KRISS a ~ 1400 -km baseline
- Difference 1x10⁻¹⁶ at about 5 day averaging (limited by TW noise at short term)

Blue = IPPP – TW SDR Red = NRCan – TW SDR

IPPP vs TW Carrier Phase

- Link KRISS (Daejeon, Korea) to NICT(Tokyo, Japan) ~ 1100 km
- TW Carrier phase: Data and analysis by Miho Fujieda, NICT (2017)
- IPPP and PPP by BIPM computation
- (IPPP TWCP) frequency difference = -4.3×10^{-17} .
- Classical PPP limited ~ $2x10^{-16}$; (PPP TWCP) = $3.8x10^{-16}$

- IPPP is a significant option for frequency transfer
 - Ubiquitous hardware; satellite products available from IGS ACs.
 - Main constraint is the need for continuous measurements; only « weak continuity » needed i.e. some gaps allowed.
 - Seems to provide 1x10⁻¹⁶ @ ~3 days, low 10⁻¹⁷ @ 10-20 days
 - Some room for improvement at short term (at least from troposphere modeling).
- May be limited at the 10⁻¹⁷ level on the long term ?
- Also limited by « usual GNSS error sources » at short term ?
- Not clear what multi-GNSS solutions could bring

Acknowledgements:

- AOS and GUM for providing fibre link data to the BIPM
- NICT, KRISS, TL for TW data
- NRCan for continuous support on PPP

Bureau International des Poids et Mesures

IGS Workshop 3-7 July 2017

www.bipm.org

METPS