

Geodetic Cloud Computing Service

Direct access to the ITR anywhere on Earth

Henno.Boomkamp@itrf.cloud

Introduction

Generalic Caud Generaling Service HESSEN

Basics of GPSdancer (→GPSdancer. org) $\Rightarrow \begin{pmatrix} A & B \\ B^t & C \end{pmatrix} \begin{pmatrix} x_g \\ x_l \end{pmatrix} = \begin{pmatrix} y_g \\ y_l \end{pmatrix}$

business incubation centre

- A GPS dancer instance accumulates the normal equations • from the most recent 24 hours of data from a single receiver
- Pre-elimination of local parameters leaves a singular normal equation for the global parameters (orbits, sat clocks, pole)

square dance algorithm

- Distributed P2P accumulation of N contributions
- All N computers end up with total network sum

 $\begin{cases} x_l = C^{-1} (y_l - B^t x_g) \\ (A - BC^{-1}B^t) x_g = y_g - BC^{-1} y_l \end{cases}$

Bandwidth per computer only grows by log(N)

IGS Workshop 2017

$$\sum (A - BC^{-1}B^{t}) x_{g} = \sum (y_{g} - BC^{-1}y_{l})$$

 x_{g}

 χ_{I}

Parie

- All global normal matrix contributions are accumulated among N GPSdancer processes that can run anywhere in the world
- All N computers then solve the same non-singular global normal ٠ equation
- All N computer find their own local solution after back-substitution
- Data and local products remain private to each GPSdancer instance

GPSdancer and GCCS timeline

Time sharing of server capacity

Objectives of Calibration / Validation campaign:

- 1. Evolve towards stable, routine analysis @ 30 minutes
- 2. Test and tune the process to reach IGS quality

3

Q

Parie

8

IGS Workshop 2017

Nominal process

Precise Point Positioning

Null test

Stations processed in routine analysis Number of stations in solution @ 0:00h (...out of 24 hourly solutions per

business incubation

IGS Workshop 2017

Paris

• eesa

Observations residuals for ionosphere-free phase (L1, L2) RMS per station for GPS week 1947

Observations residuals for ionosphere-free phase (L1, L2) **Details for 3 stations in GPS week 1947**

Observations residuals for ionosphere-free phase (L1, L2) Example stations BAKE, NYA1, YELL

GPS week 1947		Null te st		PPP		Global solution		
# obs	available	Used	Rejected	Used	Rejected	Used	Rejected	
BAKE	22213	21797	416	21808	405	22104	109	
NYA1	22362	21956	406	21979	383	22253	109	
YELL	21601	21213	388	21229	372	21495	106	
RMS(mm)		wghtd	nrmlzd	w ghtd	n rm lzd	wghtd	nrmlzd	
BAKE		3.51	11.98	3.22	10.81	2.19	7.18	
NYA1		3.65	13.53	3.33	12.11	2.14	7.61	
YELL		3.53	11.73	3.32	10.88	2.19	7.02	

wghtd = elevation weighted residuals nrmlzd = unweighted residuals

Estimated parameters

	Parameter		Frequency	per run	initial value	initial sigm a	constraint	e st sigm a	units
Global	Polar motion	Хр, Үр	2 pair per arc	4	m ean pole	1.00E-02	no	1.00E-05	masec
		dU T 1	1 per arc	1	0	1.00E+00	no	1.00E-06	s
	Orbit	X, Y, Z	per sat per arc	96	bro adcast	1.00E+02	no	1.00E-02	m
		vx, vy, vz	per sat per arc	96	bro adcast	1.00E-02	no	1.00E-06	m/s
	SRP	5-param Bernese	per sat per arc	160	0	1.00E-08	no	1.00E-10	-
	Clocks	transmitter	per sat per epoch	9216	bro adcast	1.00E-06	no	1.00E-11	s
Local	Clocks	receiver	per sta per epoch	288	0	1.00E-06	no	1.00E-11	s
	Displacement	dX, dY, dZ	per sta per arc	3	0	1.00E-03	YES	1.00E-03	m
	Troposphere	zenith delay	per sta per 2 hour	12	0	1.00E-01	no	1.00E-03	m
		gradients N, E	2 pair per sta per a	4	0	1.00E-03	no	1.00E-04	m
	Other	ambiguity	perpass	60	L - P	1.00E+00	no	1.00E-02	m

- Parameter initialization independent from previous run
 - Goal is to maximize decorrelation, in spite of large overlaps
- Unconstrained LSQ <u>except for station displacements</u>
 - No-net rotation condition w.r.t. ITRF core network
 - Absolute constraints \rightarrow see next slide

Geodelic Cloud:

Cesa business incubation centre Darmstadt

Constraints on station displacements

Introduction of new sites in solution

Example: recovery after shift

With 5 mm constraints on site displacements:

- Solution time series relatively noisy (RMS > 5mm)
- -Quick response to real events: impact invisible after 24 hours
 - Data arc no longer contains "old" position data
- Long-term site datum recovered after several days

Genselic Coul Canading Barrice HESSEN

Remaining steps

• Before 10/2017:

- -GCCS website on-line at "itrf.cloud"
 - Detailed Cal-Val report also on this site
- -Routine analysis at 30 minute latency
 - No more time sharing with test runs
- -Server capacity will be extended
 - Currently 3 x 200 stations (@Frankfurt, D)
 - Extended with 4 x 100 stations (@Strassbourg, F)
 Capacity will be 1000 stations but arbitrarily scalable

Subsidized servers will only remain available until 11/2018

- Gradual incorporation of real users is needed
 - -Regional RTK operators, receiver manufacturers, etc.
 - -Target: 10,000 stations using GPSdancer in the cloud by 2020

Summary and conclusions

- Distributed <u>global</u> analysis based on GPSdancer is approaching its mature operational status
 - Station products are comparable with IGS
 - Combined noise in data, IGS finals and GPSdancer does not exceed 5 mm RMS
 - Processing capacity now 600, soon 1000 sites
 - ...twice the size of the IGS network
- ITRF datum can be transferred reliably to any non-ITRF CORS site
 - ITRF sites and non-ITRF sites are processed in **exactly** the same solution
 - 200+ ITRF sites in network demonstrate the absolute solution accuracy
 - Non-ITRF sites show identical output characteristics (noise, sigmas)
 - Stable mean of the output position time series accurately represent the ITRF

IGS Workshop 2017

Paris

- Risk of unobservable systematic errors in regional PPP has been mitigated
- ...we still need the IGS!
 - IGS defines ITRF as conventional reference frame
 - GCCS can densify the ITRF to include all CORS stations on Earth

business incubation centre

