

The Impact of GNSS Data on JTRF2014

Richard Gross(1), C Abbondanza (1), TM Chin (1), MB Heflin (1), JW Parker (1), BS Soja (1), and X Wu (1)

(1) Jet Propulsion Laboratory – California Institute of Technology

© 2016 California Institute of Technology. U.S. Government sponsorship acknowledged.

IGS Workshop 2017

Paris, 3-7 July 2017

Jet Propulsion Laboratory California Institute of Technology

Motivation

- Assess the role of GNSS data into JTRF combination scheme.
- In order to do so, we perform a KALREF combination test in which only VLBI, SLR and DORIS data are assimilated.
- We will compare the GNSS-free solution to the official JTRF2014 in order to quantify the extent to which the removal of GNSS alters the KALREF-combined TRF.
- Comparisons will be based on the analysis of
 - The Helmert Transformation Parameters to ITRF2014.
 - Earth Orientation Parameters (EOPs).
 - Velocity fields and Seasonal Signals estimated during the combination.
 - Geocentre (CM-CN) Motion Determination.

Input Datasets adopted in this study

Intro Datasets		5	Combination	EOPs	Velocity Fields		Annual Signals		eocentre Motion Conclusions
т		тс	TS	Constr	SOL	TR	SF	ST	Source
R (VL	BI)	IVS	1979 - 2015	None	NE	1-day	y 5796	158	Bachmann et al, 2016
1 (511			1983 - 1993		VC	14-day	244	138	Lucari at al 2016a
L (SLK)		ILING	1993 - 2015	LOOSE		7-day	1239	138	Lucen et al, 2010a
D (DOI	RIS)	IDS	1993 - 2015	Minimal	VC	7-day	1139	160	Moreaux et al, 2015

T SG technique: P GNSS, R VLBI, L SLR, D is DORIS.

TC Technique Center.

TS Time Span for each solution.

Constr Type of Constraints.

SOL SINEX format: VC Variance-Covariance, NE Normal Equations.

TR Temporal Resolution

SF Number of SINEX files for each solution

ST Number of Stations.

Set-Up KALREF Combination Test (No GNSS)

ntro Da

Combination

EOPs Velo

Velocity Fields

Annual Signals

Geocentre Motion Conclusions

Frame Type Time Series	
Station Motion Model Linear Trend, Annual, Semi-Annual	
Process Noise Station-dependent Random Walk	
Origin Quasi-Instantaneous SLR	
Scale Quasi-Instantaneous Weighted Average VLBI/SLR	
Orientation No-Net-Rotation to ITRF2008	

JTRF2014 Network

Jet Propulsion Laboratory
California Institute of TechnologyIGS Workshop 2017
Paris, 3-7 July 2017

No-GNSS Network

Jet Propulsion Laboratory
California Institute of TechnologyIGS Workshop 2017
Paris, 3-7 July 2017

No-GNSS Combination Statistics

Comparison of JTRF2014 and GNSS-free Comb

Valacity Fields

Annual Signals

Concentre Motion Conclusions

Datase	Combination LOPS Velocity riel		y i leius	Annual Signais	Geocentie Motio	JII COnclusions	
	T_x	Ty	T_z	D	R_x	Ry	$R_{\mathcal{Z}}$
offset	-0.28 (0.44)	-0.30 (0.40)	0.17 (0.53)	-0.12 (0.39)	-0.27 (0.26)	-0.42 (0.29)	-0.20 (0.31)
rate	0.03 (0.11)	-0.08 (0.10)	0.16 (0.11)	0.00 (0.00)	0.00 (0.01)	0.06 (0.14)	0.01 (0.02)

- Estimates are based on the selection of a set of 329 segments between the 2 frames.
- Offsets are computed at Jan 1 2005 and expressed in [mm].

Combination

- Rates are expressed in [mm/yy].
- Parenthesized are formal errors (1- σ level).
- Offsets and Rates between the 2 frames (are not statistically different from 0).

JTRF2014/GNSS-free Frames to ITRF2014 (1)

JTRF2014/GNSS-free Frames to ITRF2014 (2)

EOP Differences to ITRF2014 (1)

EOP Rates Differences to ITRF2014 (2)

Jet Propulsion Laboratory
California Institute of TechnologyIGS Workshop 2017
Paris, 3-7 July 2017

EOP Rates Differences to ITRF2014 - Fits and Residuals

Datasets		tion EOPs	Velocity Fields	Annual Sigr	nals Geocentre	Motion C	Conclusions
		Bias	Rate	Annual	Semi-Annual	RMS	
YPO	JTRF-ITRF	26.31 (0.26)	-3.16 (0.07)	9.90 (0.24)	2.64 (0.24)	33.18	
	NoGNSS-ITRF	27.47 (1.01)	-11.65 (0.19)	15.29 (1.86)	4.06 (1.82)	147.05	
YPO	JTRF-ITRF	23.63 (0.25)	5.05 (0.07)	18.13 (0.26)	8.01 (0.26)	31.31	
	NoGNSS-ITRF	24.46 (1.01)	9.25 (0.19)	31.45 (1.86)	4.38 (1.82)	146.71	
1111	JTRF-ITRF	-2.20 (0.10)	0.17 (0.02)	1.07 (0.07)	0.24 (0.07)	8.53	
011	NoGNSS-ITRF	-3.14 (0.13)	0.46 (0.02)	1.41 (0.10)	0.77 (0.10)	10.14	
YPOR	JTRF-ITRF	0.71 (1.08)	-0.39 (0.21)	3.91 (0.73)	1.05 (0.72)	51.05	
	NoGNSS-ITRF	6.86 (3.64)	-4.46 (0.61)	29.52 (7.15)	22.03 (6.95)	600.44	
VPOR	JTRF-ITRF	0.91 (1.05)	-0.51 (0.20)	5.85 (0.70)	1.41 (0.69)	49.78	
	NoGNSS-ITRF	-7.82 (3.51)	-9.33 (0.59)	96.26 (7.57)	24.90 (7.37)	806.20	
	JTRF-ITRF	-0.02 (0.19)	0.01 (0.03)	0.14 (0.09)	0.09 (0.09)	12.73	
	NoGNSS-ITRF	0.14 (0.20)	-0.01 (0.04)	0.14 (0.16)	0.44 (0.17)	30.57	

Units are uas for pole coordinates and uas/d for pole rates

Units are usec for UT1 and usec/day for LOD

Effect on the Velocity Fields

Jet Propulsion Laboratory California Institute of Technology IGS Workshop 2017 Paris, 3-7 July 2017

Effects on Geocentre Motion Determination

Distribution of the **76** stations adopted for the geocentre determination from the GNSS-free solution. 10 DORIS and 4 VLBI stations have been added to the SLR network.

Geocentre Motion CN-CM (JTRF2014)

California Institute of Technology Paris, 3-7 July 2017

Geocentre Motion CN-CM (GNSS-Free)

California Institute of Technology *Paris, 3-7 July 2017*

Jet Propulsion Laboratory IGS Workshop 2017

Geocentre Motion – Seasonal Signals

Intro

Comb

EOPs Vel

Velocity Fields

Annual Signal

Geocentre Motion Conclusions

т	Р	Ar	nnual	Semi-Annual			
·	•	A [mm]	arphi [deg]	A [mm]	arphi [deg]		
	$T_{\mathcal{X}}$	2.8 (0.1)	325.2 (2.8)	0.9 (0.1)	190.1 (2.7)		
ILRS	Ty	2.4 (0.1)	232.8 (2.5)	0.3 (0.1)	92.9 (4.9)		
	T_{z}	5.8 (0.3)	298.8 (2.4)	1.8 (0.3)	113.8 (5.3)		
	$T_{\mathcal{X}}$	2.4 (0.0)	322.9 (1.0)	0.7 (0.0)	204.3 (0.9)		
JTRF2014	Ty	2.6 (0.0)	229.4 (0.8)	0.3 (0.0)	56.5 (2.7)		
	T_{z}	3.2 (0.1)	300.9 (0.9)	1.4 (0.1)	115.6 (1.3)		
	$T_{\mathcal{X}}$	2.4 (0.1)	331.2 (1.6)	0.7 (0.1)	189.8 (1.3)		
No-GNSS	Ty	3.0 (0.0)	245.8 (0.8)	0.2 (0.0)	101.8 (1.5)		
	T_{z}	3.7 (0.1)	294.6 (1.0)	1.4 (0.1)	113.2 (1.6)		
	T_{x}	1.8 (0.2)	302.7 (4.5)	0.6 (0.2)	190.6 (3.3)		
INVERSION	Ty	3.4 (0.2)	237.2 (2.2)	0.6 (0.2)	102.6 (4.9)		
	T_z	3.7 (0.2)	295.0 (3.2)	1.2 (0.2)	143.5 (4.7)		

Jet Propulsion Laboratory
California Institute of TechnologyIGS Workshop 2017
Paris, 3-7 July 2017

Conclusions

Conclusions

Velocity Fields

- A GNSS-free KALREF derived combination has been produced to investigate the contribution of GNSS data to JTRF2014.
- The GNSS-free and JTRF2014 frame are fundamentally equivalent in terms of instantaneous origin and scale, as expected.
- We observe larger rotational drift and rotational instabilities in the GNSS-free solution (GNSS doesn't contribute to the core station for the NNR constraints)
- Combined PM and PM rates get remarkably degraded with increased rates, spurious seasonal signals and significantly larger dispersions of the differences to the ITRF2014 EOP series.

Conclusions – cont'd

ntro Datasets

city Fields

- Horizontal component of the JTRF2014 and No-GNSS velocity field are highly consistent, while a loss of correlations is observed for the radial velocities.
- Seasonal signals exhibit larger dispersion of the differences (than the velocities) but they're acceptably well correlated. Correlations are higher for the radial component, where the seasonal signal is larger.
- Geocentre motion is only minimally affected with differences in the amplitudes of the annual signals less than 0.5 mm.

Intro Da

Combination

OPs Veloci

elocity Fields

nnual Signals 👘 Geocent

ion Conclusions

Back-up Slides

Frame Definition and Space Geodesy Contribution to JTRF2014

Intro Datasets	Combination	EOPs	Velocity Fields	Annual Signals	Geocentre Motion	Conclusions	
----------------	-------------	------	-----------------	----------------	------------------	-------------	--

	Terrestrial Frame				Earth Rotation					
Technique	Origin	Scale	Orientation	x_p	y_p	UT	\dot{x}_p	\dot{y}_p	LOD	
P (GNSS)										
R (VLBI)										
L (SLR)										
D (DORIS)										

... In this Study ...

Intro	Datasets	Combination	EOPs	Velocity Fields	Annual Signals	Geocentre Motion	Conclusions

	Т		Earth Rotation						
Technique	Origin	Scale	Orientation	x_p	y_p	UT	\dot{x}_p	\dot{y}_p	LOD
P (GNSS)									
R (VLBI)									
L (SLR)									
D (DORIS)									

Adjustment of the SG Input Data Covariances

Conclusions

Comparison of JTRF2014 and GNSS-free Comb

Intro Datasets Combination EOPs Velocity Fields Annual Signals Geocentre Motion Conclusions

Jet Propulsion Laboratory
California Institute of TechnologyIGS Workshop 2017
Paris, 3-7 July 2017

WRMS of the transformation

Intro	Datasets	Combination	EOPs	Velocit	y Fields	Ann	ual Signals Geo	centre Motion	Conclusions
			Χ	Υ	Ζ	3D	$\sqrt{\chi^2/dof}$	-	
		Positions	4.7	4.0	5.5	4.7			
							1.06		
		Velocities	1.3	0.9	1.3	1.2			

Position WRMS are computed at Jan 1 2005 and expressed in [mm]. Velocity WRMS are expressed in [mm/yy].

Polar Motion Residuals – JTRF2014

Polar Motion Residuals – JTRF2014

Velocity Fields

Annual Signals

Geocentre Motion

Conclusions

EOPs

Effect on the combined Earth Orientation Parameters

Datasets		EOPs	Velocity Fields	Annual Signals	Geocentre Motion	Conclusions
	($x_p^t =$	$x_p^C + r_2^t$			
		$y_p^t =$	$y_p^C + r_1^t$			
	Įι	$UT^t =$	$UT^C - \frac{1}{f}r_3^t$			
		$\dot{x}_p^t =$	\dot{x}_p^C			
		$\dot{y}_p^t =$	\dot{y}_p^C			
		$DD^t = D$	LOD^C			

Effect on the Annual Signal (Amplitudes)

Effect on the Annual Signal (Phases)

JTRF-derived Geocentre Motion

Intro Dat

Combination

Ps Velocit

elocity Fields

Annual

Geocentre Motion Conclusions

- It is a **downstream product** computed in a post-processing stage by applying to the output combined KALREF SINEX files the **translational approach**.
- The assumption we are making is that the instantaneous CM as sensed by SLR has been transferred to the other techniques by virtue of ties to SLR and co-motion constraints.
- If this holds true, we can include techniques other than SLR in our geocentre motion determination. In so doing the SLR network distribution can be improved by including more stations in uncovered geographical regions.
- Once the network distribution has been properly selected, the SINEX files are stacked. Only translation parameters will be estimated. The full covariance matrix reported in the SINEX is used. Internal Constraints will be applied.