Review of the IGS Contribution to the ITRF

INSTITUT NATIONAL DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE Zuheir Altamimi Paul Rebischung Laurent Métivier Xavier Collilieux IGN, France Email: zuheir.altamimi@ign.fr

Key Points of the IGS Contribution to the ITRF

- 1. Inter-Technique link : reinforcing the ITRF definition (origin, scale & orientation)
- 2. Determination of Post-Seismic Deformation Models
- 3. ITRF2014 Plate Motion Model
- 4. Polar Motion
- 5. ITRF Access & densification through the IGS Products

Illustrations from ITRF2014 results

ITRF2014: Input data

Service/Technique	Number of Solutions	Time span	# of sites
IGS/GNSS/GPS	7714 daily	1994.0 – 2015.1 (21 yrs)	884
IVS/VLBI	5328 daily	1980.0 – 2015.0 (35 yrs)	124
ILRS/SLR	244 fortnightly 1147 weekly	1980.0 – 1993.0 1993.0 – 2015.0 (35 yrs)	96
IDS/DORIS	1140 weekly	1993.0 – 2015.0 (22 yrs)	71

ITRF2014: GNSS

IGS Workshop, Paris, 3-7 July, 2017

DE CINFORMATION GÉOGRAPHIQUE ET FORESTIERE

ITRF2014 colocation sites

- SLR-VLBI : 11
- SLR-DORIS: 11
- VLBI-DORIS: 12

of local ties vectors between GNSS &:

- DORIS: 103
- SLR : 56
- VLBI: 62
- Total: 221

1. Inter-Technique link : reinforcing the ITRF definition (orientation)

127 of stations used in the alignment of ITRF2014 to ITRF2008 in Orientation

- GNSS: 93
- VLBI: 24
- SLR: 8
- **DORIS:** 2

From ITRF2014 to ITRF2008

Solution	Тх	Ту	Tz	Scale	Rx	Ry	Rz
	mm	mm	mm	ppb	mas	mas	mas
Offset	1.6	1.9	1.4	-0.02	0.000	0.000	0.000
±	±0.2	±0.1	±0.1	±0.02	±0.006	±0.006	±0.006
Rate	0.0	0.0	0.0	0.02	0.000	0.000	0.000
±	±0.2	±0.1	±0.1	±0.02	±0.006	±0.006	±0.006

0

1. Inter-Technique link : reinforcing the ITRF definition (Frame uncertainties)

Example:

Compare VLBI frame uncertainties within

SLR+VLBI_only combination: 16 LT vectors versus ITRF2014 combination: 221 LT vectors

Uncertainties (formal errors) of the frame parameters

Solution	Tx mm	Ty mm	Tz mm	Scale ppb	Rx mas	Ry mas	Rz mas
SLR+VLBI	±1.4	±1.2	±1.5	±0.20	±0.050	±0.067	±0.050
ITRF2014	±0.6	±0.6	±0.7	±0.10	±0.007	±0.007	±0.015

1. Inter-Technique link : reinforcing the ITRF definition (scale)

VLBI vs SLR Scale Offset

Solution	Scale at 2010.0 ppb	Comments
VLBI & SLR co- locations, No GNSS	1.02 ± 0.20	11 sites (good distribution): 16 LT vectors, properly weighted
Rate	0.02 ± 0.02	
ITRF2014	1.37 ± 0.10	All Tie SNX files properly weighted
Rate	0.02 ± 0.02	

Modelling nonlinear station motions: Motivations

Green circles: ITRF2014 sites (117)

• More than 100 sites are subject to Post-Seismic Deformation due to major earthquakes

Precisely modeling the above leads to more robust secular frame and site velocities.

2. Post-Seismic Deformations

Post-Seismic Deformations

- Fitting parametric models using GNSS/GPS data
 - at major GNSS/GPS Earthquake sites
 - Apply these models to the 3 other techniques at Co-location EQ sites
- Parametric models:
 - Logarithmic
 - Exponential
 - Log + Exp
 - Two Exp

Tsukuba Trajectory

GNSS

DE CINFORMATION GÉOGRAFINIQUE ET FORESTIERE

3. ITRF2014 Plate Motion Model

ITRF2014: Horizontal velocity field

Retained sites (all IGS sites) after selection

IGS Workshop, Paris, 3-7 July, 2017

DE CINFORMATION GÉOGRAPHIQUE ET FORESTIERE

Selection of the final model : Residuals

4. ITRF2014 Polar Motion: Residuals

5. ITRF access & densification through the IGS Products

Some Facts

ET EDRESTIÈRI

- GNSS Exponential Data Explosion
 - Local, National & Reginal GNSS networks
- Using IGS Products provides Universal access to and densification of the ITRF

13,400 stations processed by NGL (Blewitt et al., 2015)

ITRF2014:

- 884 GNSS Sites
- Facilitates the alignment of the GNSSbased frames to the ITRF

More than 80% of National RFs are aligned to the ITRF (source: UN-GGIM GGRF questionnaire)

Conclusion

The fundamental contribution of the IGS to:

- 1. Reinforcing the ITRF frame definition (origin, scale & orientation)
- 2. ITRF2014 Post-Seismic Deformation Models
- 3. ITRF2014 Plate Motion Model
- 4. ITRF Polar Motion
- 5. ITRF Access & densification through the IGS Products

