BDS Real-time Precise Products from WHU and its application in NBASS

Shi C., Lou YD., Li M., Gu SF., Zhang WX., Zheng F., Li XJ., Song WW., Dai XL., Yi WT.

GNSS Research Center of Wuhan University, GRC
IGS Workshop 2017
July 3-7, 2017, Paris, France
Outline

- Overview
- BDS Real Time Precise Products
- Application of Real-time PPP
- Summary
The Current Status of BDS

BDS-2

<table>
<thead>
<tr>
<th>Common Name</th>
<th>SVN</th>
<th>Int. Sat. ID</th>
<th>Status</th>
<th>PRN</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEIDOU IGSO 6</td>
<td>C017</td>
<td>2016-021A</td>
<td>Operational</td>
<td>C15/C13</td>
<td>~95° E; launched 2016/03/29; PRN switch from C15 to C13 on 2016/10/11</td>
</tr>
<tr>
<td>BEIDOU G7</td>
<td>C018</td>
<td>2016-037A</td>
<td>N/A</td>
<td>C17</td>
<td>launched 2016/06/12</td>
</tr>
</tbody>
</table>
The Current Status of BDS

- **BDS-2**

BDS-2

<table>
<thead>
<tr>
<th>Common Name</th>
<th>SVN</th>
<th>Int. Sat. ID</th>
<th>Status</th>
<th>PRN</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEIDOU IGSO 6</td>
<td>C017</td>
<td>2016-021A</td>
<td>Operational</td>
<td>C15/C13</td>
<td>~95° E; launched 2016/03/29; PRN switch from C15 to C13 on 2016/10/11</td>
</tr>
<tr>
<td>BEIDOU G7</td>
<td>C018</td>
<td>2016-037A</td>
<td>N/A</td>
<td>C17</td>
<td>launched 2016/06/12</td>
</tr>
</tbody>
</table>

Accuracy (95%)

- **SPP**
 - Without IGSO-6: 3.54m
 - With IGSO-6: 3.34m
 - Improvement: 5.6%
 - Vertical: 6.09m
 - With IGSO-6: 5.83m
 - Improvement: 4.3%
The Current Status of BDS

BDS-2

<table>
<thead>
<tr>
<th>Common Name</th>
<th>SVN</th>
<th>Int. Sat. ID</th>
<th>Status</th>
<th>PRN</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEIDOU IGSO 6</td>
<td>C017</td>
<td>2016-021A</td>
<td>Operational</td>
<td>C15/C13</td>
<td>~95° E; launched 2016/03/29; PRN switch from C15 to C13 on 2016/10/11</td>
</tr>
<tr>
<td>BEIDOU G7</td>
<td>C018</td>
<td>2016-037A</td>
<td>N/A</td>
<td>C17</td>
<td>launched 2016/06/12</td>
</tr>
</tbody>
</table>

PPP

<table>
<thead>
<tr>
<th>Convergence time (95% <1m)</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>without IGSO-6</td>
<td>142 min</td>
<td>146 min</td>
</tr>
<tr>
<td>with IGSO-6</td>
<td>116 min</td>
<td>120 min</td>
</tr>
</tbody>
</table>

Improvement

<table>
<thead>
<tr>
<th></th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3%</td>
<td>17.8%</td>
<td></td>
</tr>
</tbody>
</table>
The Current Status of BDS

BDS-2

<table>
<thead>
<tr>
<th>Common Name</th>
<th>SVN</th>
<th>Int. Sat. ID</th>
<th>Status</th>
<th>PRN</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEIDOU IGSO 6</td>
<td>C017</td>
<td>2016-021A</td>
<td>Operational</td>
<td>C15/C13</td>
<td>~95° E; launched 2016/03/29; PRN switch from C15 to C13 on 2016/10/11</td>
</tr>
<tr>
<td>BEIDOU G7</td>
<td>C018</td>
<td>2016-037A</td>
<td>N/A</td>
<td>C17</td>
<td>launched 2016/06/12</td>
</tr>
</tbody>
</table>

BDS-3

<table>
<thead>
<tr>
<th>Common Name</th>
<th>SVN</th>
<th>Int. Sat. ID</th>
<th>Status</th>
<th>PRN</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEIDOU I1-S</td>
<td>C101</td>
<td>2015-019A</td>
<td>Operational</td>
<td>C31</td>
<td>launched 2015/03/30</td>
</tr>
<tr>
<td>BEIDOU M1-S</td>
<td>C102</td>
<td>2015-037A</td>
<td>Operational</td>
<td>C33</td>
<td>Slot A06, launched 2015/07/30</td>
</tr>
<tr>
<td>BEIDOU M2-S</td>
<td>C103</td>
<td>2015-037B</td>
<td>Operational</td>
<td>C34</td>
<td>Slot A01, launched 2015/07/30</td>
</tr>
<tr>
<td>BEIDOU I2-S</td>
<td>C104</td>
<td>2015-053A</td>
<td>Operational</td>
<td>C32</td>
<td>launched 2015/09/29</td>
</tr>
<tr>
<td>BEIDOU M3-S</td>
<td>C105</td>
<td>2016-006A</td>
<td>N/A</td>
<td>C35</td>
<td>Slot B01; launched 2016/02/01</td>
</tr>
</tbody>
</table>
National BDS Augmentation Service System (NBASS)

- **Object**
 - Improving the *positioning performance* of the BDS
 - Providing various precise location-based services

- **Infrastructure**
 - 150 BDS/GNSS reference stations as Nationwide frame.
 - About 1200 BDS/GNSS dense reference stations in special area.
 - National data processing center, application service centers.

- **Augmented Satellite System**
 - BDS, GPS, GLONASS, Galileo…
Tracking Station Network for BDS RT-PPP Service

~72 stations for BDS ORB, ~92 stations for BDS CLK, ~150 stations for regional products
Principle of processing system

Step 1
Multi-GNSS POD → Orbit Extrapolation → Real-time Orbit

Step 2
Real-time Clock Estimation (1s interval) → Real-time clock

Step 3
Real-time ionosphere modeling (30s interval) → Real-time ionosphere corrections

Step 4
Real-time troposphere modeling (1s interval) → Real-time troposphere corrections

Real-time PPP service
Outline

- Overview
- BDS Real Time Precise Products
- Application of Real-time PPP
- Summary
Real-Time Satellite Orbit

<table>
<thead>
<tr>
<th>RMS (cm)</th>
<th>GEO</th>
<th>IGSO</th>
<th>MEO</th>
<th>GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50.0</td>
<td>17.6</td>
<td>21.0</td>
<td>5.9</td>
</tr>
<tr>
<td>C</td>
<td>5.1</td>
<td>6.8</td>
<td>4.2</td>
<td>2.6</td>
</tr>
<tr>
<td>R</td>
<td>13.5</td>
<td>7.7</td>
<td>4.0</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Real-Time Precise Satellite Clock (URE)

\[URE = \sqrt{\alpha \cdot (dA^2 + dC^2) + \beta (dClk - dR)^2} \]

\(\alpha = 0.01846081, \beta = 0.96308408 \)
MEO

\(\alpha = 0.0078296, \beta = 0.99214524 \)
GEO/IGSO

- Affect SPP accuracy
- Affect PPP accuracy
- Affect PPP convergence time
Real-Time CIM (China Ionosphere Map)

Strategy

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stations</td>
<td>~100</td>
</tr>
<tr>
<td>Interval</td>
<td>30 second</td>
</tr>
<tr>
<td>Coverage</td>
<td>E70140, N1060</td>
</tr>
<tr>
<td>Format</td>
<td>SSR</td>
</tr>
<tr>
<td>Observable</td>
<td>Carrier-phase smoothed pseudo-range GF</td>
</tr>
<tr>
<td>Modeling</td>
<td>5 degree SHF</td>
</tr>
</tbody>
</table>
Real-Time CIM (China Ionosphere Map)

Strategy

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stations</td>
<td>~100</td>
</tr>
<tr>
<td>Interval</td>
<td>30 second</td>
</tr>
<tr>
<td>Coverage</td>
<td>E70140, N1060</td>
</tr>
<tr>
<td>Format</td>
<td>SSR</td>
</tr>
<tr>
<td>Observable</td>
<td>Carrier-phase smoothed</td>
</tr>
<tr>
<td></td>
<td>pseudo-range GF</td>
</tr>
<tr>
<td>Modeling</td>
<td>5 degree SHF</td>
</tr>
</tbody>
</table>

Assessment

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>DOY 021~028, 2017</td>
</tr>
<tr>
<td>Station</td>
<td>~200</td>
</tr>
<tr>
<td>Reference</td>
<td>VTEC generated by PPP</td>
</tr>
<tr>
<td>RMS</td>
<td>3.4 TECU</td>
</tr>
</tbody>
</table>
Initial result of Real-time Tropospheric Grid Point model (TGP)
Initial result of Real-time Tropospheric Grid Point model (TGP)

<table>
<thead>
<tr>
<th>Season</th>
<th>TGP</th>
<th>GPT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>0.79</td>
<td>2.42</td>
</tr>
<tr>
<td>Spring</td>
<td>1.02</td>
<td>3.29</td>
</tr>
<tr>
<td>Summer</td>
<td>1.38</td>
<td>4.33</td>
</tr>
<tr>
<td>Autumn</td>
<td>1.39</td>
<td>4.33</td>
</tr>
<tr>
<td>Average</td>
<td>1.15</td>
<td>3.59</td>
</tr>
</tbody>
</table>
Outline

- Overview
- BDS Real Time Precise Products
- Application of Real-time PPP
- Summary
Details of the Real-Time experiment

- Stations: 26, distributed over China
- Session time: 20170121-20170128
- Accuracy
 - DF-PPP/SF-PPP/SF-SPP
- Convergence
 - DF-PPP/SF-PPP/DF-PPP with TGP
Real-time BDS DF-PPP Accuracy

- Mean Up Error: 7.6 cm
- Mean North Error: 3.9 cm
- Mean East Error: 3.5 cm
Real-time BDS+GPS DF-PPP Accuracy

Up Error
- Mean: 3.4 cm

North Error
- Mean: 1.2 cm

East Error
- Mean: 1.5 cm
Real-time BDS SF-PPP Accuracy

Up Error
North Error
East Error

Up Error Distribution
North Error Distribution
East Error Distribution

mean: 0.6m
mean: 0.2m
mean: 0.3m
Real-time BDS+GPS SF-PPP Accuracy

Up Error
- Mean: 0.3m

North Error
- Mean: 0.1m

East Error
- Mean: 0.2m
Real-time BDS SF-SPP Accuracy

Mean values for different error distributions:
- Up Error: mean = 1.6 m
- North Error: mean = 0.9 m
- East Error: mean = 0.6 m
Real-time BDS+GPS SF-SPP Accuracy

- **Up Error:**
 - Mean: 1.0m

- **North Error:**
 - Mean: 0.5m

- **East Error:**
 - Mean: 0.4m
Result Analysis

- **DFPPP**
- **SFPPP**
- **SPP**
DF-PPP Convergence time

- BDS only
- GPS only
- GPS+BDS

Time since PPP start [minutes]

Horizontal error [m]

Vertical error [m]
SF-PPP Convergence time
BDS DF-PPP Convergence time with TGP

The graphs illustrate the convergence time for different methods using TGP. The traditional method shows a slower rate of convergence compared to the methods using TGP.
Outline

- Overview
- BDS Real Time Precise Products
- Application of Real-time PPP
- Summary
Summary

- BDS Real-time Precise Products:
 - Real-time Orbit: GEO 15cm(R); IGSO/MEO 10cm(R), 30cm(3D)
 - URE (Clock): BIAS~1.0m, STD~2cm
 - Real-time Ionosphere: ~3TECU, The precision of boundary area is a bit poor
 - Real-time Troposphere: <1.5cm, Initial result

- BDS Real-time PPP:
 - DF-PPP: 10cm in horizontal, 20cm in vertical, convergence time ~60 mins
 - DF-PPP: 0.6m in horizontal, 1.2m in vertical, convergence time ~5 mins
 - SF-SPP: 2.0m in horizontal, 3.0cm in vertical, comparing with standard SPP, improvement is about 40% and ~50% in horizontal and vertical
 - BDS positioning accuracy distribution with regional characteristics, its accuracy is worse than GPS in marginal area

- The major Contribution of BDS/GPS Combination
 - DF-PPP: ~20mins; SF-PPP: ~2mins
Thank You for Your attention!

shi@whu.edu.cn