

A new real-time ZTD grid product over China and applications in PPP

Weixing Zhang¹, Yidong Lou¹, Jinfang Huang¹, Hong Liang²,

- Fu Zheng¹, Chuang Shi³, Jingnan Liu¹
- 1. GNSS Research Center, Wuhan University, China
- 2. Meteorological Observation Center, CMA, China
- 3. School of Electronic and Information Engineering, Beihang University, China

IGS Workshop, Jul 3-7, 2017, Paris, France

□ Introduction

- Data and processing strategy
- □ Real-time ZTD grid product
- Summary and Conclusions

Introduction

• ZTD (Zenith Tropospheric Delay)

• Why we need ZTD in real-time?

Nowcasting

Navigation

• Performances of current real-time ZTD models/products

✓ Saastamoinen, Hopfield, ect. \rightarrow decimeter/sub-decimeter

- ✓ UNB models, EGNOS → sub-decimeter
- ✓ SHAO models, GPT2, TropGrid, IGGtrop, ITG \rightarrow > 4 cm

Not better than 4 cm

✓ Real-time ZTD product based on CORS → can be better than 2 cm (e.g., Zhang et al., 2013; Yu et al., 2016) Generally at the scale of several hundreds of km

Introduction

- Objectives
 - ✓ Real-time
 - ✓ High accuracy
 - ✓ At the national scale of China
 - ✓ Easy to use
- Solutions

□ Introduction

□ Data and processing strategy

□ Real-time ZTD grid product

Conclusions

Data and processing strategy

• Meteorological reanalysis product

Source	ERA-Interim (ECMWF)
Time resolution	6-hourly
Horizontal resolution	0.75° x 0.75°
Vertical levels	37 (pressure levels)
Period	2011~2014
Fields	geopotential; temperature; specific humidity

• ZTD estimation method

 $ZTD = ZTD_{top} + ZTD_{level}$

- ✓ ZTD_{top} : Saastamoinen model
- \checkmark ZTD_{level}: Integration of refractivity

$$N = \frac{k_1(P - e)}{T} + (\frac{k_2 e}{T} + \frac{k_3 e}{T^2})$$

Considering the altitude difference

ZTD differences compared to IGS final products (2014)

Station name	Bias (cm)	RMS (cm)	
BJFS	0.29	1.25	
CHAN	-0.19	1.09	
LHAZ	0.76	1.43	
SHAO	-0.53	0.94	
URUM	1.94	2.30	
WUHN	-0.14	1.38	
Mean	0.36	1.40	

Data and processing strategy

• GNSS data

□ GNSS data processing strategy

Variables	Configuration
Interval	30 sec
Software	PANDA
Mode	Simulated real-time PPP
Orbits & Clocks	IGS archived real-time products
Station Coordinate	Fixed
a-priori ZHD & ZWD	Saastamoinen + GPT
Mapping function	GMF
Cutoff angle	7°
ZWD correction	Constants every 5 min
Horizontal gradient	NS & EW every 12 h

CMONOC (~253): product generation CMONOC (test) (16): product evaluation NBAS (~95): PPP test

□ Bias and RMS of real-time ZTD errors at all CMONOC stations (2015)

	Jan.	Apr.	Jul.	Oct.	Mean
Bias (cm)	0.05	0.26	0.28	0.41	0.25
RMS (cm)	1.07	1.22	1.21	1.23	1.18

Introduction

Data and processing strategy

□ Real-time ZTD grid product

Conclusions

Real-time ZTD grid product

ZTD vertical correction model

Real-time ZTD grid product

• Real-time ZTD product generation

- Real-time ZTD product accuracy assessment
 - ✓ 16 CMONOC stations as test stations
 - ✓ The other CMONOC stations for real-time ZTD product generation

Bias and RMS of real-time ZTD errors				\frown
Jan.	Apr.	Jul.	Oct.	mean
-0.03	0.41	0.66	0.49	0.39
1.09	1.52	2.07	1.57	1.56
	□ Bi Jan. -0.03 1.09	Jan. Apr. -0.03 0.41 1.09 1.52	Jan. Apr. Jul. -0.03 0.41 0.66 1.09 1.52 2.07	Jan. Apr. Jul. Oct. -0.03 0.41 0.66 0.49 1.09 1.52 2.07 1.57

Bias and RMS in each month at each stationNo obvious errors in different regions

ZTD comparisons

Improvements compared to empirical models

Real-time ZTD grid product

- PPP convergence tests
 - ✓ 95 NBAS stations as PPP test stations
 - ✓ Period: Apr 4-10, 2016
 - ✓ Observations: GPS/BDS

D PPP convergence comparisons

Convergence Thresholds: H (0.2m), V (0.5m)

D Convergence time (min) comparisons

	H(95%)	V(95%)	H(68%)	V(68%)	
BDS	194.5	252.5	123.0	146.5	w/o
	181.0	192.0	105.0	76.5	with
	6.9%	24.0%	14.6%	47.8%	
GPS	78.0	34.0	48.5	7.5	w/o
	77.0	14.0	47.0	5.0	with
	1.3%	58.8%	3.1%	33.3%	

Significant improvements in vertical component

- Real-time ZTD grid product
 - ✓ Empirical ZTD vertical correction model + real-time GNSS network
 - ✓ High accuracy (< 1.5 cm)</p>
 - ✓ Real-time (5 min interval)
 - ✓ High resolution $(0.75^{\circ} \times 0.75^{\circ})$
 - $\checkmark\,$ At the national scale over China
 - ✓ Easy to use (saved table + real-time ZTD grid products)
 - Significantly accelerate PPP convergences, especially in the vertical component
 - \checkmark Can be easily expanded to the global scale

Thanks!

Contact: Dr. Weixing Zhang E-mail: zhangweixing89@whu.edu.cn