ETH zürich

Improvement in the estimation of troposphere zenith delays using high-accuracy clocks

K. Wang^{1),2)}, M. Rothacher¹⁾, M. Meindl¹⁾, E. Schoenemann³⁾, W. Enderle³⁾

- 1) Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland
- 2) GNSS Research Centre, Curtin University, Australia
- 3) ESA/ESOC, Navigation Support Office, Darmstadt, Germany

Overview

- Introduction: clock modeling and kinematic height estimation
- Motivation for this study
- Results without and with clock modeling:
 - Influence on kinematic heights
 - Influence on zenith path delays (ZPD)
- Comparison with meteo and WVR data (CEBR and ONSA)
- Conclusions

Highly accurate clocks Clock model

• Clocks are modelled with offset a_0 , drift a_1 and a stochastic parameter p_i

$$clk(t_i) = a_0 + a_1 \cdot (t_i - t_0) + p_i(t_i)$$

Relative constraints may be imposed on the stochastic parameter

$$p_i(t_i) = p_{i+1}(t_{i+1})$$
 $P_i = \frac{\sigma_0^2}{\sigma_r^2}$

Very weak absolute constraints are imposed for regularization

Highly accurate clocks Clock quality of some selected IGS stations

- 1) Standard deviation σ after removing a linear polynomial over one day
- 2) Standard deviation of epoch-to-epoch differences σ_e after removing a linear polynomial.
- Standard deviations σ of the order of 30-120 ps (1 4 cm)
- The epoch-to-epoch repeatability σ_e is on the level of 10 20 ps (3-6 mm, phase noise)
- Indication of the size of the relative constraints

Station	σ (in ps)	σ _e (in ps)
CEBR	86	19
HERS	30	13
HRAO	39	11
MGUE	27	10
PTBB	114	12
ZECK	30	11

August 8, 2015

Motivation Kinematic station height with clock model

 Standard deviation of kinematic heights without (σ) and with best clock model (σ_c)

Station	σ (in cm)	σ _c (in cm)	Improvement
CEBR	8	4	2.0
HERS	9	4	2.3
HRAO	49	14	3.5
MGUE	12	5	2.4
PTBB	10	4	2.5
ZECK	9	3	3.0

Motivation Correlation of troposphere, station clock, and height

Kinematic station height: varying the ZPD resolution

Clock model with 1 mm constraint

Kinematic station height: varying the ZPD resolution

Clock model with 1 mm constraint

Kinematic station height: varying the ZPD resolution

ETH zürich

Kinematic station height: varying the ZPD resolution

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ZPD comparison with meteo data

- STDs of the differences ZPD(GPS) –
 ZPD (meteo)
- ZPD(meteo) are free from correlations with the heights and the clocks
- → Significant improvement in the ZPD stability, especially for high sampling rates

August 9, 2015

ETH zürich

ZPD comparison with WVR, station CEBR

Comparison of ZPD from GPS and ZPD computed from IWV data (15 min samp.)

ZPD comparison with WVR, station CEBR, 2 days

- Accuracy: comparison of ZPD from GPS with/without clock model
- Reduction of the ZPD RMS when applying the clock modeling
- Higher reduction at high sampling rate for the ZPD estimates

→ Significant improvement of ZPD with clock modeling

ZWD comparison with WVR, station ONSA, 5 days

- Comparison of ZWD (zenith wet delay) from GPS with/without clock model and ZWD from WVR data (15 min sampling of ZWD, May 20-24, 2014)
- \rightarrow Much increased stability

ZWD comparison with WVR, station ONSA, 5 days

RMS of difference between ZWD from WVR data and from GPS

Date		R	MS of ΔZ	ZWD [m]			
	2 h	1 h 30 min	1 h	$45 \min$	$30 \min$	$15 \mathrm{min}$	
		Without clo	ck model				_
August 20, 2014	0.0068	0.0060	0.0065	0.0070	0.0066	0.0084]
August 21, 2014	0.0223	0.0227	0.0344	0.0405	0.0327	0.0383]
August 22, 2014	0.0093	0.0075	0.0092	0.0091	0.0106	0.0107]
August 23, 2014	0.0155	0.0137	0.0155	0.0166	0.0169	0.0167]
August 24, 2014	0.0125	0.0125	0.0138	0.0134	0.0153	0.0150	1
		With clock	(model				
August 20, 2014	0.0060	0.0057	0.0061	0.0064	0.0064	0.0071	
August 21, 2014	0.0062	0.0089	0.0074	0.0093	0.0096	0.0105	\rightarrow All solutions
Augsut 22, 2014	0.0086	0.0075	0.0087	0.0084	0.0085	0.0083	imptrovo with
August 23, 2014	0.0126	0.0129	0.0136	0.0136	0.0145	0.0152	
August 24, 2014	0.0101	0.0092	0.0113	0.0097	0.0111	0.0100	CIUCK MODEIIN

EHzürich

Conclusions

- Clock modeling not only improves kinematic heights but also ZPDs
- With clock modeling there is no degradation in ZPDs, even for time resolution for ZPDs of 15 minutes
- Comparison with meteo and WVR data (CEBR and ONSA) → improved ZWD for all solutions, when modeling the station clock
- Next step: verification with a much larger data sets

