

Revisiting the origin of GLONASS interfrequency phase biases and its implication to IGS Bias-SINEX products

Jianghui GENG

GNSS Research Center, Wuhan University, China

"Antennas & Biases" IGS Workshop 2017 3-7 July 2017

Paris France

GNSS Research Center Wuhan University

GLONASS ambiguity resolution is difficult!

- Diverse frequencies across GLONASS L1/L2 bands
 - Inter-frequency phase biases (i.e. IFPB) at receivers
 - IFPBs don't cancel after differencing between satellit

 \sim

Slide

Aha, inter-frequency biases can be corrected

- IFPBs are linear function of frequency channel numbers
 - IFPBs appear to depend on receiver types/families
 - L1 and L2 signals seem to share identical IFPBs

In fact, it's differential code-phase bias that matters

- Sleewaegen (2012) found that
 - Differential code-phase biases (DCPBs) are the physical origin of IFPBs
 - DCPBs consist of DSP and hardware induced parts
 - DSP induced DCPBs are fixed values for a specific receiver type

2017

Mysteries of IFPBs/DCPBs

- **Question 1**: Uncertainty of IFPB/DCPB estimates?
- Question 2: Receiver type specific IFPBs/DCPBs suffice or not?
- Question 3: One IFPB/DCPB for a receiver type suffice or not?

LO

Slide

Racers to Illuminate and Decipher ti

First, a little bit of math for DCPBs

- Pseudorange and carrier-phase have different clocks and hardware biases. $\begin{array}{l} \Delta P_g^i = \Delta \rho^i + c \Delta t_{\rm P} + c \Delta b_{{\rm P},g}^i \\ \Delta L_g^i = \Delta \rho^i + c \Delta t_{\rm L} + c \Delta b_{{\rm L},g}^i + \lambda_q^i \Delta N_q^i \end{array}$
- Therefore I_g^{ai} common clock as supplied results M_q^{i} DCPBs,

• which consist of DSP and hardware induced parts.

$$\Delta B_{g} = \Delta B_{\text{DSP}} + \Delta B_{\text{HW},g}$$

$$\Delta B_{\text{DSP}} = \Delta t_{\text{L}} - \Delta t_{\text{P}}$$

$$\Delta B_{\text{HW},g} = \Delta b_{\text{L},g} - \Delta b_{\text{P},g}$$
Hardware and observable dependent

In theory, how do DCPBs relate to different observables?

- DSP induced DCPB B_{DSP}
 - is constant for all observables (wide-lane, narrow-lane, etc.)
- Hardware induced DCPB $B_{HW,g}$
 - is however observable dependent
- In fact, we have for ionosphere-free and wide-lane DCBPs that

 $\Delta B_{\rm IF} = 2.53125 \Delta B_1 - 1.53125 \Delta B_2$

$$\Delta B_{\rm w} = 4.5 \Delta B_1 - 3.5 \Delta B_2$$

$$\Delta B_1 = \Delta B_2$$
Clearly, if
$$\Delta B_1 = \Delta B_2 = \Delta B_{\rm IF} = \Delta B_{\rm w} \implies f_{\rm true?}$$
Is this
true?

201

$\Delta B_{\mathrm{HW},g}$ matters or not, subject to uncertainties of DCPBs

How to estimate DCPBs

- use wide-lane and narrow-lane ambiguity fixing,
- but wide-lane fixing can be difficult over baselines of 1000+ km because
 - Melbourne-Wübbena combination doesn't work and
 - no precise ionosphere data for wide areas can be used
- Repeatabilities of DCPBs over a long period
 - The risk is whether DCPBs should be physically stable or not

201

How to estimate DCPBs for a huge network

- An efficient method for huge networks (Banville 2016; Liu et al. 2016)
 - can be applied to a broad/global network of stations
 - use only ionosphere-free ambiguity fixing,
 - though its wavelength is only ~5.3 cm which
 - isn't a big problem on account of the quality of IGS final orbit products
 - Note that only ionosphere-free DCPBs can be estimated
 - We compare these DCPB estimates with those from ultra-short baseline solutions
 - DCPBs from ultra-short baseline solutions are easily achievable and presumed as benchmarks
 - We can take this to assess the accuracy of DCPBs

2017

Data and processing

- 212 days of data in 2015
- 200 stations involved
 - DCPBs for ionosphere-free observables are estimated in a network solution
 - 10 ultra-short baselines (<210m) across Europe

Racers to Illuminate and Decir

 DCPBs on L1 and L2 are directly estimated

Uncertainties of DCPBs

- 0.7 ns (RMS) for ionosphere-free DCPBs against L1/L2 DCPBs
- L1/L2 DCPBs can be quite different
 - DCPBs are actually observable dependent
- DCPBs vary with time which can be significant
 - Repeatabilities will then be problematic to quantify DCPB precisions

DCPBs specific to receiver types or stations?

- DCPBs can be quite different among the same types of receivers by up to 30 ns
 - These differences are statistically significant
 - The differences are subject to not only receiver types, but also antennas, domes, firmware, etc.

How will the "30 ns" affect ambiguity resolution?

• Biases on ambiguities in cycles due to $DC \mathbb{R} \mathbb{B}_{g}$

$$\xi_{g} = \Delta B_{g} \left(h^{i} - h^{j} \right) \Delta f_{q} \Longrightarrow_{\text{spacing}}^{\text{Frequency}}$$
Channel number difference (at most 13)

$$\begin{cases} \xi_1 \to 0.22 \text{ cycle} \\ \xi_2 \to 0.17 \text{ cycle} \\ \xi_w \to 0.05 \text{ cycle} \\ \xi_n \to 0.39 \text{ cycle} \\ \xi_{en} \to 0.78 \text{ cycle} \end{cases} \overset{\text{Wide-lane is} \\ \text{intle affected} \\ \text{while} \\ \text{ionosphere-free} \\ \text{is most} \end{cases}$$

 \sim

IGS Workshop Paris France 201

 \mathbf{m}

Slide

Which observable specific DCPBs to provide for users?

- DCPBs on L1 and L2
 signals can differ by up to 10 ns
 - What if we use L1 DCPBs for ionosphere-free ambiguity resolution?
- Ionosphere-free DCPBs are preferred
 - High efficiency to compute
 - L1, L2 and wide-lane are more resistant to DCPB errors

Implications to IGS Bias-SINEX products

- DCPBs of sub-ns accuracy can be achieved over a large network by efficiently resolving ionosphere-free ambiguities;
- DCPBs should be estimated and applied on account of their station and observable specific properties, especially for ambiguities of short wavelengths.
 - DCPBs can differ significantly by up to 30 ns for the same types of receivers
 - Provide both L1 and L2 DCPBs if possible, otherwise ionospherefree DCPBs are preferred. Their difference can be up to 10 ns
- More details and interesting aspects refer to
 - Geng et al. (2017) A review on the inter-frequency biases of GLONASS carrier-phase data. Journal of Geodesy

Thanks for your attention

jgeng@whu.edu.cn

jhgeng1982@gmail.com

Homepage: pride.whu.edu.cn

9

Slide

