

Research on Real-time Precise Point Positioning Algorithm Based on Broadcast Ephemeris and Global Reference Network

Fei Ye (1,2), Yunbin Yuan(1), Baocheng Zhang(1) and Wei Yan(3)

Real-time-11

feiye@whigg.ac.cn

(1)State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Wuhan, China
 (2)University of Chinese Academy of Sciences, Beijing, China
 (3)Tianjin Institute of Surveying and Mapping, Tianjin, China

yybgps@whigg.ac.cn; b.zhang@whigg.ac.cn; yanweigps@hotmail.com

Introduction

The traditional real-time precise point positioning (PPP) algorithm requires realtime orbit and clock products based on worldwide reference stations. Among them, real-time orbit products are usually predicted by precise orbit products, and the irregular motion of the satellite will reduce the accuracy and reliability of the predicted orbit products. In order to get rid of the dependence on the predicted orbit products and reduce the strong correlation between user location, satellite orbit and clock parameters. We use the joint solution on broadcast ephemeris, user station and global evenly distributed reference network, which can real-time estimate user location, satellite orbit and clock correction parameters. Moreover, satellite orbit and clock correction parameters can broadcast to other users to achieve PPP algorithm. In this poster, the following four parts will be presented.

Test and Analysis

To evaluate the effectiveness and reliability of the orbit and clock solutions obtained in the global network using kalman filter, a statistical analysis was performed on a large data set by PPP. Stations measurements and broadcast ephemeris were downloaded from the IGS. Fig.1 displayed their distribution, blue and red represented reference station and user receiver, respectively.

Model and Method

For a satellite s observed by receiver r, the Ionosphere-Free Combination (IF) after linearization for code and carrier phase observation equations can be expressed:

 $P_{r,IF}^{s} = -\mu_{r}^{s} \cdot \Delta r + \mu_{r}^{s} \cdot \Delta s + cdt_{r} - cdt^{s} + M_{r}^{s} \cdot zpd_{r} + \varepsilon_{P_{IF}}$ $L_{r,IF}^{s} = -\mu_{r}^{s} \cdot \Delta r + \mu_{r}^{s} \cdot \Delta s + cdt_{r} - cdt^{s} + M_{r}^{s} \cdot zpd_{r} + A_{r}^{s} + \varepsilon_{L_{IF}}$

Where,

 $cdt_{r} = cdt_{r,P_{IF}}$ $cdt^{s} = cdt_{P_{IF}}^{s}$ $A_{r}^{s} = A_{r,IF}^{s} + cdt_{r,L_{IF}} - cdt_{r,P_{IF}} - cdt_{L_{IF}}^{s} + cdt_{P_{IF}}^{s}$

 $P_{r,IF}^{s}$ and $L_{r,IF}^{s}$ are the observation residuals of the code and phase ionosphere-free combination, respectively; μ_{r}^{s} , Δr and Δs are the line-of-sight vectors, correction vectors of station coordinate and satellite orbit, respectively; $A_{r,IF}^{s}$ is the phase ionosphere-free combination ambiguity; $cdt_{r,P_{IF}}$ and $cdt_{P_{IF}}^{s}$ are the clock errors of receiver and satellite for code observation, respectively, which include signal delay; $cdt_{r,L_{IF}}$ and $cdt_{L_{IF}}^{s}$ are clock errors of receiver and satellite for phase observation, respectively, which include uncalibrated phase delays; $\varepsilon_{P_{IF}}$ and $\varepsilon_{L_{IF}}$ are refer to carrier observation and code observation errors, respectively.

Kalman filter model to a global reference network and user

Parameter nature	Value	Comments				
Receiver clock at datum station	0	White noise				
Receiver clock at other station	Covariance set to 4e14	white hoise				
Satellite clock	Covariance set to 4e14	White noise				
Zenith troposphere delay	$q = 3 \times 10^{-8} m^2 / \text{sec}$	Random walk process				
Coordinates at reference station	0	Fixed				
Coordinates at static user station	Covariance set to 100					
Coordinates at dynamic user station	Covariance set to 4e14	White noise				
Satellite orbit corrections	Covariance set to 100	White noise				
Dhago ambiguition	Constant (initial covariance set	Ambiguities are constant during				
rnase amoiguittes	to 4e14)	a pass				

provided by IGS. Fig.2, Fig.3 and Tab.1 showed the static positioning results, and Fig.4, Fig.5 and Tab.2 showed the dynamic positioning results.

Fig.5 Dynamic positioning results of the other five user station	on
--	----

Ctotion.		Mean/m		Mean/m RMS/m			Station		Mean/m		RMS/m			
Statior	dN	dE	dU	dN	dE	dU			dN	dE	dU	dN	dE	dU
ADIS	-0.005	-0.020	-0.077	0.007	0.016	0.012		ADIS	-0.015	0.008	-0.083	0.039	0.083	0.147
ALIC	0.003	0.006	-0.036	0.002	0.016	0.020		ALIC	-0.007	-0.026	-0.070	0.027	0.043	0.065
Static BAKO	0.002	0.001	-0.071	0.006	0.012	0.010	Dynamic	CHAN	0.029	-0.020	-0.103	0.037	0.032	0.067
itioning BRAZ	0.007	0.009	-0.018	0.012	0.034	0.050	positioning	BRAZ	0.001	0.023	0.030	0.043	0.078	0.093
bias BRMU	-0.002	0.023	-0.055	0.003	0.007	0.036	bias	NLIB	0.058	-0.042	0.003	0.020	0.028	0.039
PICL	0.007	0.008	-0.044	0.004	0.014	0.025		PICL	0.030	-0.024	-0.088	0.026	0.022	0.060
RCMN	-0.011	-0.022	-0.103	0.004	0.017	0.023		RCMN	-0.016	0.000	-0.171	0.024	0.058	0.122
RIO2	0.000	-0.016	-0.068	0.005	0.013	0.009		RIO2	-0.002	-0.005	-0.118	0.029	0.014	0.036
SVTL	0.000	-0.002	-0.022	0.003	0.003	0.004		SVTL	0.001	-0.011	-0.051	0.011	0.008	0.027
TEHN	-0.003	0.000	-0.045	0.002	0.004	0.013		TEHN	0.004	-0.012	-0.058	0.012	0.017	0.030
lean	0.000	-0.001	-0.054	0.005	0.014	0.020	Mean		0.008	-0.011	-0.071	0.027	0.038	0.069
Do	1	t o												
Re	sul	ts												
Re	sul	ts												
Re	sul	ts												
Rea	sul	ts		1 .1.									hin	
Re (1)Th	sul e sta	ts atic	anc	1 d	ynai	mic	real-t	ime	e po	ositi	oni	ng	bia	S
Re (1)Th	sul e sta	ts atic	anc	1 d	ynai	mic	real-t	cime	e po	ositi	oni	ng	bia	S
Res (1)Th RM	sul e sta	ts atic	anc e a	1 dy 1001	yna ithr	mic n is	real-t	t	e po 1-2c	ositi	oni	ng	bia	S
Res (1)Th RM	sul e sta S of	ts atic f th	anc e a	1 dy 1gor	yna ithr	mic n is	real-t abou	time at 1	e po 1-2c	ositi m	oni and	ng 1(bia Dcm	S,
Res (1)Th RM	sul e sta S of	ts atic f th	anc e a	1 dy 1gor	ynai	mic n is	real-t abou	time at 1	e po 1-2c	ositi m	oni	ng	bia Dcm	S.
Res (1)Th RM resp	sul e sta S of oectiv	ts atic f th vely.	anc e a	1 dy 1gor	ynai	mic n is	real-t abou	time at 2	e po 1-2c	ositi m	oni	ng	bia Dcm	S,
Res (1)Th RM resp	sul e sta S of oectiv	ts atic f th vely.	anc e a	l dy lgor	ynai	mic n is	real-t abou	time at	e po 1-2c	ositi m	oni	ng	bia Dcm	S_,

2)Our algorithm can get rid of the dependence on the ultra-ephemeris and reduce the strong correlation between user location, satellite orbit and clock parameters.