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Motivation and Introduction

Tropospheric Refraction

I Refractivity variations in Neutral Atmosphere form a signi�cant error source for
space-geodetic techniques such as Global Navigation Satellite Systems (GNSS)
or Very Long Baseline Interferometry (VLBI)

I At the same time refraction variations are valuable as signal, which can be used
to enhance the modelling of neutrospheric refraction

I Especially micro-scale meteorological phenomena (turbulent properties) are little
studied and not yet considered in routine analysis, such as Reference Frame de-
termination

Purpose of this study

I Investigate the spatial structure of the troposphere from dis-
tributed GPS and VLBI stations at the Geodetic Observatory
Wettzell, Germany, by means of geostatistics

IDevelop a strategy to �nd a suitable model to the describe spa-
tial structure by including observations of di�erent periods of
time

I Check feasability of estimating Zenith Wet Delays (ZWDs) for an
arbitrarily choosen epoch and line of sight (GPS or VLBI) from
an interpolated surface of ZWDs

Data

I GPS L3 carrier phase residuals and ZWDs from 4
stations at Wettzell Observatory (WTZR, WTZS,
WT33, and WT27 ) @1Hz from daily PPP Kalman
Filter solution for 3 days in Feb. 2015 (for setting
see [Kube and Sch�on, 2016])

I VLBI (RTW ) ZWDs @30min

Finally 18 hours of data on DoY 50 2015 from both
techniques were used for this study.

Analysis steps and Methods
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Fig. 1: Equivalent ZWD (EZWD) for WTZR (a)
and corresponding temporal structure funtions (b).

MP_ZRESr+ZWDr=EZWD

choose # of epochs and project to

height 1000m above WRTZ station height

residual stacking

(WTZR and WTZS)

L3 carrier phase
residuals (RES)

daily PPP EKF solution

Zenith Wet Delays
(ZWD)

reduce to

common height

compute empirical variogram

fit various variogram models and evaluate fitting

Ordinary Kriging Interpolation

and evaluation of interpolation results

Multipath reduced slant

residuals (MP_RES)

Multipath reduced zenith

residuals (MP_ZRES)

reduced ZWDs

(ZWDr)

project to zenith with

mapping function

remove Trend and Offset

per day and station
remove Trend and Offset per

day, station and arc

reduced residuals

(MP_ZRESr)

Fig. 2: Flowchart of the estimation of a tropo-
spheric surface from Zenith Wet Delays and PPP

residuals.

Preprocessing

I GPS residual stacking according to [Fuhrmann et al., 2015] in order to re-
duce the multipath inuence. Since permanent GPS observations are not
available for WT33 and WT27, multipath reduction was only possible for
WTZR and WTZS

I Reduction of VLBI and GPS ZWDs to commom height and removing trend
and o�set from residual and ZWD time series

I Computation of GPS Equivalent ZWDs (EZWDs) by mapping the resid-
uals to the zenith and adding the ZWD, see Fig. 1(a) - residuals contain
mainly turbulence, since all other remaining e�ects are carefully modelld in
our PPP algorithm, see Fig. 1(a)

I Choosing VLBI ZWD epochs (36 epochs @30min) as reference epochs
I Projecting GPS EZWDs and VLBI ZWD to plane 1000m above Wetzell, see
Fig. 3(a) and 3(b)
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Fig. 3: Schematic representation of EZWDs projected to plane @1000m height (a) and EZWDs in the plane for sample
epoch GPSsod 12523 with convex hull (red line) and EZWDs of � 15min (b).

Variogramm Computation and Fitting

I Setting up empirical variograms by computing semivariances (h) = 1

2n

P
n

i=1
[EZWD(xi)� EZWD(xi + h)] with lag distance h between points in plane, n the num-

ber of points within a distance class, here we used 300m, and xi , the local coordinate in the plane. Plotting the empirical semivariances against the distance shows
the spatial variability of EZWDs, see squares in Fig. 4(b) and Fig. 4(c).

I Fitting variogram modells to the data [Stein, 1999] by means of least squares �t: Linear Model (1), Exponential Model (2), M�atern Model with Exponent � = 1=3
(3)
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I Comparing the spatial variablity, e.g. the variogram parameter range a and sill b of a sample epoch by varying the number of epochs included in the variogram com-
putation, see Fig. 4(a) and 4(b). Nugget variance c0 is omitted in this study.

I Evaluating the quality of variogram �tting by computing the root mean squared error (RMSE) and correlation coe�cient of the residuals.

Ordinary Kriging Interpolation

I Surface estimation of EZWD by means of Ordinary Kriging, which uses the mathematical function speci�ed with the variogram modell, see Fig. 5
I Evaluating the surface by cross-validation (leave-one-out): remove one GPS data location and predict the associated data using the data at the rest of the locations
and compare predicted and measured value by means of RMSE and mean absolute error (MAE)
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Fig. 4: General variogram description and three di�erent variogram models used in this study (a), empirical variogram and variogram models �tted to the
data of a sample epoch (b) and evolution of empirical variogram over time period of 18h @ 30min.
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Fig. 5: EZWD surface within convex hull of points from Ordinary Kriging
Interpolation with apriori EZWD of GPS and VLBI stations.

Results and Findings

INumber and distribution of EZWDs in a single epoch is not meaningful for �tting a variogram, thus changing the number
of epochs included in the variogram for the current epoch: 1s, 5s, 10s, 30s, 1min, 10min, 30min, 1h:
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Fig. 6: Empirical variogram of sample epoch by including di�erent number of observations for the variogram computation of the current epoch (a) and estimated variograms:
Linear model (b), Exponential model (c) and M �atern model (d). Note: colorscale is the same for all plots.

I Empirical variogram gets smoother the more epochs are
included, but small-scale variations get lost, see Fig. 6

IThree selected variogram models show similar behaviour,
no signigicant di�erence either in the RMSE of the vari-
ogram residuals, the correlation coe�cient, see Fig. 7 or
the estimated variogram parameters, see Fig. 8

I Including more epochs in the variogram computation
I reduces the RMSE of the variogram residuals and in-
creases the correlation between empirical values and se-
lected model, see Fig. 7

I decrease the estimated range parameter and increases
the estimated sill variance, see Fig. 8

for the majority of investigated epochs
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Fig. 7: RMSE of the variogram residuals (top) and correlation coe�cient (bottom)
between empirical and �tted variogram for three di�erent models. Note: colorscale

ist the same as in Fig. 6(a).
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Fig. 8: Estimated variogram parameter range (top) and sill
(bottom) for three di�erent models (1st column Linear model,
2nd column Exponential model and 3rd column M �atern model).
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Fig. 9: RMSE (top) and MAE (bottom)
for cross-validation (di�erences EZWD -
kriged value) for sample epoch and mean
for all epochs (1st column Linear model,
2nd column Exponential model and 3rd
column M �atern model). Note: colorscale

ist the same as in Fig. 6(a).

I Since variogram �tting shows large residuals, the estimated EZWD surface is
to smooth, see Fig. 5.

I Cross-validation: Mean absolute error is negative for all models and epochs
in mean, indicating that the kriged EZWDs are a little to big w.r.t. to ob-
served values. The more epochs are included for the variogram estimation,
the smaller the rmse of the di�erences between observed and kriged EZWDs,
ses Fig. 9.

I Clustering of points should be considered in future, e.g. by using composed
variograms with variable size of lag distances
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