Monitoring the variation of covariance matrices of line-of-sight BDS triple frequency signals

<u>Yanming Feng</u>, Yongchao Wang Queensland University of Technology, Australia Fu Zheng, Wuhan University

IGS Workshop, 12 February 2016, Sydney

Geometry-based observational models:

$$\begin{bmatrix} P_{1} \\ P_{2} \\ P_{5} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \rho + \begin{bmatrix} \frac{1}{f_{1}^{2}} \\ \frac{1}{f_{2}^{2}} \\ \frac{1}{f_{5}^{2}} \end{bmatrix} q + \begin{bmatrix} \tilde{b}_{1} \\ \tilde{b}_{2} \\ \tilde{b}_{5} \end{bmatrix} + \begin{bmatrix} \varepsilon_{p1} \\ \varepsilon_{p2} \\ \varepsilon_{p5} \end{bmatrix}, \quad \begin{bmatrix} \varphi_{1} \\ \varphi_{2} \\ \varphi_{5} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \rho - \begin{bmatrix} \frac{1}{f_{1}^{2}} \\ \frac{1}{f_{2}^{2}} \\ \frac{1}{f_{5}^{2}} \end{bmatrix} q - \begin{bmatrix} \lambda_{1} \tilde{N}_{1} \\ \lambda_{2} \tilde{N}_{2} \\ \lambda_{5} \tilde{N}_{5} \end{bmatrix} + \begin{bmatrix} \varepsilon_{\varphi 1} \\ \varepsilon_{\varphi 2} \\ \varepsilon_{\varphi 5} \end{bmatrix}$$

$$\rho = \left| X_r - X^s \right| + CLK_r - CLK^s + T_r^s$$

$$\boldsymbol{\varepsilon}_{P} = \begin{bmatrix} \varepsilon_{P_{1}} & \varepsilon_{P_{2}} & \varepsilon_{P_{5}} \end{bmatrix}^{T}, \quad \boldsymbol{\varepsilon}_{\phi} = \begin{bmatrix} \varepsilon_{\phi_{1}} & \varepsilon_{\phi_{2}} & \varepsilon_{\phi_{5}} \end{bmatrix}^{T}$$

Statistical models:

$$E(\boldsymbol{\varepsilon}_{p}) = \boldsymbol{0}, Cov(\boldsymbol{\varepsilon}_{p}) = \boldsymbol{\Sigma}_{p}, E(\boldsymbol{\varepsilon}_{\phi}) = \boldsymbol{0}, Cov(\boldsymbol{\varepsilon}_{\phi}) = \boldsymbol{\Sigma}_{\phi}$$

We aim to estimate the covariance matrices Σ_P, Σ_{ϕ} from time to time

Geometry-free/lonosphere-free (GFIF) - functional models

• Four linearly independent and the effects of code and phase noises are separable (Estey & Meertens, 1999, for GFIF1 to GFIF3)

where,

$$\overset{0}{b_{i}^{\prime}} = b_{i,r} - b_{i}^{s} \qquad \overset{0}{N_{i}^{\prime}} = N_{i} - B_{i,r} + B_{i}^{s} \quad \alpha = \frac{f_{1}^{2} + f_{2}f_{5}}{f_{1}^{2} - f_{1}f_{5}}, \beta_{2} = \frac{f_{1}^{2}}{f_{2}^{2}}, \beta_{3} = \frac{f_{1}^{2}}{f_{5}^{2}}$$

Contribution of code and phase noise terms

	GFIF	Coef	ficients	Contribution of pseudorange and phase noise terms (unit: cm).					
		P_1	P_2	P_5	ϕ_{1}	ϕ_2	ϕ_5	$\sigma_p = \frac{30 \text{ cm}}{30 \text{ cm}}$	$\sigma_{\phi}^{=}$ 2 mm
GPS signals	GFIF ₁	1	0	0	-4.0915	3.0915	0	30	1.03
	GFIF ₂	0	1	0	-5.0915	-4.0915		30	1.16
	GFIF ₃	0	0	1	-3.5212		2.5212	30	0.87
	GFIF _{WL}	0	0	0	27.293	-147.961	120.668	0	38.57
Beidou	GFIF ₁	1	0	0	-4.8874	3.88740	0	30	1.25
signais	GFIF ₂	0	1	0	-4.9743	0	3.9743	30	1.27
	GFIF ₃	0	0	1	-5.8874	4.8874	0	30	1.53
	GFIF _{WL}	0	0	0	37.3188	-158.8910	121.5722	0	40.70

Multivariate Multiple Regression (MMR)

- Seemingly Unrelated Regression (SUR) models (Zellner, 1962):
 - 1 Use p-degree polynomial function to describe a GFIF time series:

$$y_{j,i} = \mu_{i0} + (t_j - t_0)\mu_{i1} + \dots + (t_j - t_0)^{p_i}\mu_{ip_i} + \mathcal{E}_{j,i}$$

2 Group all the GFIF time series over n epochs together:

$$\begin{bmatrix} \mathbf{Y}_{1} \\ \mathbf{Y}_{2} \\ \mathbf{Y}_{3} \\ \mathbf{Y}_{4} \end{bmatrix} = \begin{bmatrix} \mathbf{H} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{H} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{H} \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu}_{1} \\ \boldsymbol{\mu}_{2} \\ \boldsymbol{\mu}_{3} \\ \boldsymbol{\mu}_{4} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\epsilon}_{Y1} \\ \boldsymbol{\epsilon}_{Y2} \\ \boldsymbol{\epsilon}_{Y3} \\ \boldsymbol{\epsilon}_{Y4} \end{bmatrix} \quad \text{where:} \quad \mathbf{Y}_{i} = \begin{bmatrix} y_{1,i} \\ y_{2,i} \\ \vdots \\ y_{n,i} \end{bmatrix} \quad \mathbf{H} = \begin{bmatrix} 1 & (t_{1} - t_{0}) & \cdots & (t_{1} - t_{0})^{p_{i}} \\ \vdots & \vdots & \vdots \\ 1 & (t_{n} - t_{0}) & \cdots & (t_{n} - t_{0})^{p_{i}} \end{bmatrix} \\ \mu_{i} = \begin{bmatrix} \mu_{i0} \\ \mu_{i1} \\ \vdots \\ \mu_{ip_{i}} \end{bmatrix} \quad \boldsymbol{\epsilon}_{Yi} = \begin{bmatrix} \boldsymbol{\epsilon}_{1i} \\ \boldsymbol{\epsilon}_{2i} \\ \vdots \\ \boldsymbol{\epsilon}_{ni} \end{bmatrix}$$

MMR-Least square solution

③ Write compactly:

 $\mathbf{Y} = \mathbf{H}_{\mathbf{v}}\boldsymbol{\mu} + \boldsymbol{\varepsilon}_{\mathbf{v}} \quad E(\boldsymbol{\varepsilon}_{Y}) = \mathbf{0}, \boldsymbol{\Sigma}_{Y} = \boldsymbol{\Sigma} \otimes \mathbf{I}_{n}$ Least square estimation (Zellner, 1962): (3) $\hat{\boldsymbol{\mu}} = (\mathbf{H}_{\mathbf{v}}^{\mathrm{T}} \boldsymbol{\Sigma}_{\mathbf{v}}^{-1} \mathbf{H}_{\mathbf{v}})^{-1} \mathbf{H}_{\mathbf{v}}^{\mathrm{T}} \boldsymbol{\Sigma}_{\mathbf{v}}^{-1} \mathbf{Y}$ Residual vector of each GFIF time series (Zellner, 1962): (4) $\mathbf{V}_{i} = (\mathbf{I}_{n} - \mathbf{H}(\mathbf{H}^{T}\mathbf{H})^{-1}\mathbf{H}^{T})\mathbf{Y}_{i}$ The variance matrix Σ is estimated by (4-by-4) (5) $\hat{\boldsymbol{\Sigma}} = \frac{\mathbf{v}^{\mathrm{T}}\mathbf{v}}{\mathbf{v}} \qquad \mathbf{v} = [\mathbf{v}_{1} \quad \mathbf{v}_{2} \quad \mathbf{v}_{3} \quad \mathbf{v}_{4}]$ - n - p - 1Or the variance matrix over a sliding /piece-wise data window: (6) $\hat{\Sigma}(j) = \frac{\mathbf{v}^{T}(j)\mathbf{v}(j)}{m-1}$ Epoch-by-epoch updated 4-by-4 covariance matrix

MMR-Variance Component Estimation

7 Estimation of components of $\Sigma_{\rm P}$ and Σ_{ϕ}

> The apiori variance matrix:

$$\Sigma_{p}^{0}: \text{ the upper-left 3-by-3 submatrix of } \hat{\Sigma} = \frac{\mathbf{v}^{T}\mathbf{v}}{n-p-1}$$
$$\Sigma_{\phi}^{0}: \Sigma_{\phi}^{0} = \Sigma_{p}^{0} \times 10^{-4}$$

Т

 \succ Variance Component Estimation for θ_1, θ_2

$$\boldsymbol{\Sigma}_{Y} = (\theta_{1}B_{1}\boldsymbol{\Sigma}_{p}^{0}B_{1}^{T} + \theta_{2}B_{2}\boldsymbol{\Sigma}_{\phi}^{0}B_{2}^{T}) \otimes \mathbf{I}_{n}$$

VCE results (eg. MINQUE, LS-VCE)

(1)
$$\begin{array}{cccc}
\hat{\Sigma}_{p} = \hat{\theta}_{1} \Sigma_{p}^{0} & (2) \\
\hat{\Sigma}_{\phi} = \hat{\theta}_{2} \Sigma_{\phi}^{0} & (2) \\
& \hat{\Sigma}_{\phi} (j) = \hat{\theta}_{2} (j) \Sigma_{\phi}^{0} (j) \\
& For \ j = m, m+1, \dots, n \\
\hline
\end{array}$$
Estimation of overall variance scale parameters

GFIF vs. LSB fitting (GMSD, JFNG)

GFIF vs. LSB fitting (GMSD, JFNG)

GFIF LSB fitting results:

- The lumped signal biases in all the GFIF time series are slowly time varying and are well-fitted by a p-degree polynomial (here p=3) over hours.
- All the $\text{GFIF}_{1\sim3}$ plots show a small range of variation within one meter. The GFIF_{WL} bias curves for G01 show the variation of up to a few meters.
- The impact of fitting period and degrees of polynomials on the covariance analysis should be small, but is yet to be further investigated

The slowly varying $\pm 2 \sigma$ curves bound the peak-to-peak amplitude of each error time series tightly (within 95%), showing a good agreement between the estimated σ values and the actual GFIF errors.

The residuals of four GFIF models for the GMSD-G01 direction, against their $\pm 2 \sigma$ curves (23 November 2013) over a moving data window of 15 min.

Variances (σ^2) of codes and phases

Station GMSD

14

Variances σ^2 of codes and phases

- Match the trend of the elevation-dependence in general
- Reflect the spontaneous amplitude changes of the errors
- Noise levels are different and are not just related to elevation only.
 - > phase σ : 1 to 4 mm, code σ : 15 to 30 cm, sometimes, 60cm

Cross-correlation (codes)

> B2 and B3 (L2 and L5) shows higher cross-correlation.

Ratio of phase σ to code σ values

- Assumed value: 1/100
- Estimated value: 1/500 ~ 1/50

Receiver covariance matrix exchange - A rinex-like format

> 20	15 01 02	13 34	10.000	00000_10)							
C01	2.7136 0.	2866	0.2959	2.6616	1.7037	2.0595	1.6225	0.1714	0.1770	1.5914	1.0187	1.2314
C02	9.7385 1.	2565	0.7537	4.4240	1.7188	2.6069	9.2857	2,1982	1.3186	7.7396	3.0070	4.5608
C03	4.5923 0.	6752	0.4655	2.9355	1.7417	2.2010	3.6825	0.5414	0.3733	2.3540	1.3967	1.7650
C04	4.6486 0.	5576	0.4011	3.4688	1.8767	2.3892	1.0932	0.1311	0.0943	0.8158	0.4413	0.5619
C05	9.6412 0.	4831	0.0367	4.2388	1.3722	2.3946	3.4281	0.1310	0.0099	1.1495	0.3721	0.6494
C06	9.2404 0.	1113	0.2019	6.1956	0.3975	8.5236	0.7277	0.0088	0.0159	0.4879	0.0313	0.6712
C07	3.1136 0.	2851	0.0027	2.2133	1.1418	2.3682	1.0761	0.0985	0.0009	0.7649	0.3946	0.8185
C08	5.2063 0.	3947	0.3435	3.0696	1.0100	5.2927	0.8850	0.0671	0.0584	0.5218	0.1717	0.8996
C09	5.8737 0.	5899	1.9516	4.4030	0.5675	6.8229	0.8876	0.0891	0.2949	0.6654	0.0858	1.0311
C10	3.6962 0.	3206	0.1520	3.0677	0.9479	3.0721	0.6698	0.0581	0.0275	0.5559	0.1718	0.5567
> 20	15 01 02	13 34	11.000	00000 10)							
C01	2.7059 0.	2858	0.2951	2.6541	1.6990	2.0537	1.6274	0.1719	0.1775	1.5963	1.0218	1.2352
C02	9.7522 1.	2578	0.7545	4, 4287	1.7206	2.6097	9.8528	2.2541	1.3521	7.9366	3.0835	4.6768
C03	4.5729 0.	6723	0.4635	2, 9231	1.7344	2, 1917	3.7091	0.5453	0.3760	2.3709	1.4068	1.7777
C04	4.6068-0.	5525	0.3975	3.4376	1.8598	2.3677	1.0920	0.1310	0.0942	0.8148	0.4408	0.5612
C05	9.6307 0.	4827	0.0367	4.2353	1.3711	2.3926	3.4325	0.1312	0.0100	1.1510	0.3726	0.6502
C06	9.2453 0.	1114	0.2021	6.1989	0.3977	8.5282	0.7316	0.0088	0.0160	0.4905	0.0315	0.6749
C07	3.1142 0.	2852	0.0027	2.2137	1.1420	2.3686	1.0785	0.0988	0.0009	0.7667	0.3955	0.8203
C08	5.2152 0.	3953	0.3441	3.0748	1.0117	5.3017	0.8908	0.0675	0.0588	0.5252	0.1728	0.9056
C09	5.8946 0.	5920	1.9585	4.4186	0.5695	6.8471	0.8876	0.0891	0.2949	0.6653	0.0857	1.0310
C10	3.7187 0.	3225	0.1529	3.0863	0.9537	3.0908	0.6640	0.0576	0.0273	0.5511	0.1703	0.5519

Units: square decimetre (1-6) & square millimetre (7-12)

Single point positioning RMS results(m)-BDS

Unit: metre	Station: SEYG			Station: JFNG			Station: GMSD			Station: MAYG		
	u	Ν	E	U	Ν	E	U	Ν	Ε	U	Ν	E
Elevation-based Variance	8.20	4.23	8.19	6.87	1.47	1.01	4.91	2.06	1.16	4.51	2.59	4.31
Estimated variance	4.05	2.53	4.24	6.49	1.23	0.78	4.43	1.97	1.23	3.85	2.40	3.61
19 provement %	50.1	40.3	48.2	5.5	15.8	23.1	9.7	4.3	-5.9	16.6	7.4	16.2

Single point positioning RMS results(m)-GPS

• RMS statistics from 95 MGEX stations (DOY 182 2014)

(1 ionosphere-free code, IGS precise orbits and clocks)

Conclusion

- The time variation of GNSS code covariance matrices in each lineof-sight can be monitored using GFIF combinations through the proposed approach.
- The ratio of phase to code noise σ values varies from time to time, thus the variation of phase covariance matrices can also be obtained
- The derived σ reflects the varying observational environment better than the elevation-based model.
- SPP results derived with the estimated covariance matrices show the evident improvement as compared with the SPP results from an empirical model, based on extensive data analysis from 99 stations

Thank you! Questions?