ITRF2014 and the IGS Contribution

Zuheir Altamimi, Paul Rebischung, Laurent Métivier, Xavier Collilieux

E-mail: zuheir.altamimi@ign.fr

Key Points

- ITRF2014 Innovations : modelling of:
 - Periodic signals: annual, semi-annual
 - Post-Seismic Deformation (PSD)
- IGS Contribution
 - Fitting the PSD models using IGS data
 - Enforcing the link between the 3 other techniques at co-location sites
- VLBI & SLR Scale Issue ?

ITRF2014 Network

ITRF2014: GNSS

IGS Workshop, Sydney, 8-12 February, 2016

GÉOGRAPHIQUE ET FORESTIÈRE

Periodic Signals

Annual & semi-annual terms estimated, using:

 $\sum \hat{a} \cos \omega t + b \sin \omega t$

Removing draconitics in addition to annuals and semiannuals has no impact on site velocities

Periodic Signals

Annual & semi-annual terms estimated, using:

 $\sum \hat{a} \cos \omega t + b \sin \omega t$

Removing draconitics in addition to annuals and semiannuals has no impact on site velocities

Post-Seismic Deformations

ITRF2014 Sites affected by PSD

INSTITUT NATIONAL DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

Post-Seismic Deformations

- Fitting parametric models using GNSS/GPS data
 - at major GNSS/GPS Earthquake sites
 - Apply these models to the 3 other techniques at Co-location EQ sites
- Parametric models:
 - Logarithmic
 - Exponential
 - Log + Exp
 - Two Exp

PSD Correction

Applications:

- Propagate ITRF2014 stations positions from t₀ to t: Add (+)
- Apply to a time series before stacking: Subtract (-)

Tsukuba Trajectory GPS VLBI 7345 21730S007 trajectory TSKB 21730S005 trajectory 10 12 8 9 6 6 4 North (cm) North (cm) 3 2 0 0 -2 -3 -4 -6 -6 -9 -8 -12 -10 -12 -15 2010 2002 2004 2006 2008 2010 2012 1995 1998 2001 2004 2007 2013 2016 1998 2000 2014 2016 80 70 70 60 60 50 East (cm) 5 8 8 8 8 East (cm) 。 ē 8 8 8 0 -10 -10 -20 -20 -30 1995 1998 2010 2013 2016 2008 2010 2012 2014 2016 2001 2004 2007 1998 2000 2002 2004 2006 10 4 8 6 2 4 Up (cm) ↓ % ₀ Up (cm) 2 0

IGS Workshop, Sydney, 8-12 February, 2016

-6

-8

-10

DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE Trajectory: Blue: Raw, Green: Linear, Red: PSD model Vertical gray lines represent discontinuities

-2 -4

> -6 -8

-10

Trajectory: Blue: Raw, Red: PSD model Vertical gray lines represent discontinuities

SLR Origin & Scale WRT ITRF2014

SLR Origin & Scale WRT ITRF2014

VLBI, SLR & DORIS Scales wrt ITRF2014

VLBI, SLR & DORIS Scales wrt ITRF2014

VLBI, SLR & DORIS Scales wrt ITRF2014

IGS Contribution

- Connecting the 3 other techniques
- Q: May have any influence on the VLBI & SLR scale agreement/disagreement ?
 - A: most certainly not, but enforces VLBI & SLR connection
- Q: Is there any other alternative for the assessment of the scale between VLBI & SLR ?
 - A: YES (see next)

ITRF2014 Co-locations (VLBI & SLR, Co-located with GNSS)

ITRF2014 Co-locations (VLBI, SLR & DORIS, Co-located with GNSS)

IGS Workshop, Sydney, 8-12 February, 2016

DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

VLBI vs SLR Scale Difference

Solution	Scale at 2010.0 ppb	Comments
ITRF2014	1.37 ± 0.10	All Tie SNX files properly weighted

VLBI vs SLR Scale Difference

Solution	Scale at 2010.0 ppb	Comments
ITRF2014	1.37 ± 0.10	All Tie SNX files properly weighted
Using "best" ties: Residuals < 5 mm	1.49 ± 0.26	32 LT vectors, properly weighted
Using "best" ties: Residuals < 5 mm	1.54 ± 0.22	32 LT vectors, equally weighted 3mm per component
Using "best" ties:	1.68 ± 0.14	32 LT vectors, equally weighted 1mm per component (not reliable ==> large residuals for some sites)

VLBI vs SLR Scale Difference

Solution	Scale at 2010.0 ppb	Comments
ITRF2014	1.37 ± 0.10	All Tie SNX files properly weighted
Using "best" ties: Residuals < 5 mm	1.49 ± 0.26	32 LT vectors, properly weighted
Using "best" ties: Residuals < 5 mm	1.54 ± 0.22	32 LT vectors, equally weighted 3mm per component
Using "best" ties:	1.68 ± 0.14	32 LT vectors, equally weighted 1mm per component (not reliable ==> large residuals for some sites)
VLBI & SLR co- locations, No GPS	1.37 ± 0.26	9 sites (good distribution): 13 LT vectors, properly weighted

From ITRF2014 to ITRF2008 Using 127 stations

	TX(mm)	TY(mm)	TZ(mm)	Scale (ppb)	Epoch
Offset	1.6	1.9	2.4	-0.01	2010.0
±	±0.2	±0.1	±0.1	±0.02	
Rate	0.1	0.0	-0.1	0.03	-
±	±0.2	±0.1	±0.1	±0.02	

Conclusion

- ITRF2014 Innovation:
 - modelling of station non-linear motions
- The IGS contribution is fundamental for:
 - The ITRF construction
 - The ITRF dissemination
- Transformation parameters between ITRF2014 & ITRF2008 are small

