GIA signals in Geodetic Reference Frames

Kurt Lambeck, Anthony Purcell and Hélène Rouby

е

t

е

S

- (i) The deformation of the solid Earth in response to a single ice load change, is global.
- (ii) There is the associated water load change and changes in inertia tensor
- (iii) It is ongoing for > 10³ years after the ice load is stabilized
- (iv) The signals will be indistinguishable form recent or present-day deglaciation from areas that also contributed to the past deglaciation.
- (v) To have effective predictive models we need to know the Earth rheology. Maxwell rheology? Internal phase boundaries? Lateral variability in viscosity and lithospheric thickness?
- (vi) Need the ice load history back to the LGM and beyond,
- (vii)) Need high resolution models for the ocean bathymetry, particularly for former and present ice shelves.

Then we have predictive model

- Corals
- Sediments

Esl = ice volume equivalent sea level

Earth response parameters for Fennoscandinavia	Litho- sphere 80 km	Upper mantle (3-4)x10 ²⁰ Pa s	Lower mantle (5-20)x10 ²² Pa s

	Н	η_{um}	η_{Im}
	<u>(km)</u>	(x10 ²⁰ Pa s)	<u>(x10²¹ Pa s)</u>
Geological data ^{1,2}	80-90	3.0-4.0	7-30
Tide gauge data ^{1,3}	80-100	4.0-4.5	≥10
GPS data ⁴	93-110	3.4-5.0	7-13

¹Lambeck and Purcell (2003); ²Lambeck et al., (2008); ³Lambeck and Ekman (1998);⁴Zhao et al. (2012).

21,000 years ago

Observed radial velocity: Lidberg 2009. (ITRF 2005)

Predicted radial velocity: GIA model Lambeck et al. 2010

Noted a systematic offset with observed rates > predicted rates.

d

time (x1000 years BP)

LGM 20 ka

Onset of BA 14.5 ka

9.0 ka

е

е

	Н	η_{um}	η_{Im}
	<u>(km)</u>	(x10 ²⁰ Pa s)	(x10 ²¹ Pa s)
Geological data ^{1,2}	80-90	3.0-4.0	7-30
Tide gauge data ^{1,3}	80-100	4.0-4.5	≥10
GPS data ⁴	93-110	3.4-5.0	7-13

¹Lambeck and Purcell (2003); ²Lambeck et al., (2008); ³Lambeck and Ekman (1998);⁴Zhao et al. (2012).

•	North America	88 m
•	Scandinavia, including Barents Sea	19 m
•	Greenland	3 m
•	British Isles	1 m
•	 Alpine glaciers Alaska 0.8 m South America 0.9 m Sub-Antarctic Islands 0.15 m Alps 0.07m Northern Asia (Taymyr, Putorama, Severnaya Z) 1.9 m Tibet and other mountain glaciers 1.0 m 	4 m
•	Total	115 m
•	Observed	<u>134 m</u>
	'Missing Ice'	19 m