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Motivation

•  Assess impact of processing parameters on troposphere 
delay estimates:
–  Random walk parameter σ for zenith delays
–  Arc length (24 hr vs. 30 hr)
–  Nominal troposphere model
–  Mapping function

•  Make recommendation for random walk σ
–  Previous recommended value from Bar-Sever and 

Kroger, Strategies for GPS-based estimates of 
troposphere delay, ION 1996

–  Bar-Sever & Kroger used data from two radiometers 
in Southern California in 1995
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Data sources

•  U.S. Department of Energy Atmospheric 
Radiation Measurement (ARM) Climate 
Research Facilities

•  Microwave water vapor radiometers (WVR)
– Measure brightness temperature
– Available products provide precipitable water 

vapor in the zenith direction
•  GPS receivers within 10 km of WVR
•  Surface pressure and temperature
•  Several years of data from each site
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WVR and GPS locations

•  4 sites in Central U.S. (Kansas, Oklahoma) – HKLO, 
HBRK, PRCO, VCIO

•  Papua New-Guinea - PNGM
•  Nauru – NAUR
•  Alaska – BASC
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Comparing WVR and GPS measurements

•  Interpolate WVR data at GPS epochs (5 minutes)
•  Convert precipitable water vapor from the WVRs to 

zenith delay:



–  Uses measured surface temperatures T

•  Hydrostatic delay from surface pressure
•  Compare to total GPS derived precise point positioning 

(PPP) delay estimate
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Comparing GPS and WVR measurements

•  WVR data unreliable when liquid water content 
of the atmosphere is high

•  Ignoring biases
•  Applied 3σ outlier
   editing for each
•  station
•  Larger differences
•  for sites with high
•  overall humidity
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Elevation Dependent Data Weights 
•  Lower weights for data at low elevation angles
•  Gives lower weights to noisier data
•  Relevant to estimation of tropospheric delays 
•  Investigating three different weight functions: equal 

weights, SIN, SQRTSIN
•  If using SIN, data weight is 

•  If using SQRTSIN, data weight is 
•  Equal weights used in determination of recommended 

random walk sigma by Bar-Sever & Kroger, 1996
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Random walk σ & elevation dependent weights
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Random walk σ & elevation dependent weights

•  As expected, optimal
•  random walk σ is higher
•  when elevation
•  dependent weights are
•  used
•  Optimal σ for different 
•  sites can differ by a 
•  factor of 2
•  Picking a higher σ than 
•  the optimal value for wet sites has only small effects on 

errors
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Random walk parameter recommendations

•  Median of site-specific values that minimize differences 
between GPS and WVR

•  Equal weights: 5e-8 km/sqrt(sec)
•  (same as previous recommendation)
•  SQRTSIN weights: 9e-8 km/sqrt(sec)
•  SIN weights: 1.4e-7 km/sqrt(sec)
•  Increase value for tracking high precipitation events
•  Future work: Use similar analysis to determine optimal σ 

for troposphere horizontal gradients
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Nominal troposphere models and mapping 
functions 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•  Comparing GPT2w to VMF1
•  Mapping function: small improvement from VMF1 

compared to GPT2w
–  0.1 - 0.2 mm for most sites
–  0.7 mm for BASC

•  Nominal wet and dry: 
•  tiny improvement with
•  VMF1

–  Mean over all sites:
–  0.02 mm
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Arc length: 24 hr vs. 30 hr 


•  Study edge effects by comparing ppp runs with 24 hr and 30 
hr data windows

•  Uses JPL’s orbit and clock products, which are available as 
daily 30 hr solutions

•  24 hr runs have ~10-20% higher standard deviation of 
differences with WVR at the beginning and end of the arc

•  Increasing the window to 30 hr eliminates edge effects
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•  Differences between GPS zenith delays at midnight 
epoch for two runs on consecutive days

•  Jumps at midnight can be significantly reduced by using 
longer data window to mitigate edge effects

•  Does not include epochs
•  for which WVR data was 
•  unavailable or GPS-WVR
•  outliers
•  RMS differences are only 
•  slightly higher if these
•  epochs are included

Day boundary discontinuities
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Summary

•  Recommended random walk σ:
–  Equal weights: 5e-8 km/sqrt(hr)
–  SQRTSIN weights: 9e-8 km/sqrt(sec)
–  SIN weights: 1.4e-7 km/sqrt(sec)
–  Increase for tracking high variability events

•  Mapping function: 0.1 – 0.7 mm improvement when using VMF1 
instead of GPT2

•  Nominal troposphere: difference between using VMF1 and GPT2 
very small

•  Differences between GPS and WVR increase by ~10-20% at data 
window boundaries

•  Extending data windows by 3 hours on each side is sufficient to 
eliminate increased GPS/WVR differences at day boundaries and 
significantly decreases day boundary jumps between GPS runs
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