

IGS Workshop 2016

February 8-12, 2016 Sydney, NSW, Australia

Daniel Landskron, Gregor Möller, Armin Hofmeister, Johannes Böhm, Robert Weber Technische Universität Wien, Austria

Refined and site-augmented tropospheric delay models for GNSS applications (Landskron et al., 2016)

Troposphere delay modeling

$\Delta L(e) = \Delta L_h^z \cdot mf_h(e) + \Delta L_w^z \cdot mf_w(e)$

- ΔL^{z} : from IGS
- ΔL_h^z : calculated from p (measured or taken from models)
- ΔL_w^z : calculated via $\Delta L^z \Delta L_h^z$
- mf_h, mf_w: from real-time mapping functions such as VMF1

BUT: Many applications without access to data from NWM or IGS

=> empirical troposphere models

Global Pressure and Temperature 2 wet (Böhm et al., 2015)

Empirical (blind) troposphere model providing:

Can we improve the empirical ΔL_w^z by including in situ measured meteorological data?

Augmentation of ΔL_w^z

- no in situ measurements (= empirical only) $\Delta L_w^z = L_{w_{GPT2w}}^z$
- in situ measurement of <u>T</u>:

$$\Delta L_w^z = L_{w_{GPT2w}}^z + M * (T_{GNSS} - T_{GPT2w})$$

in situ measurement of <u>T</u> and <u>e</u>:

a.)
$$\begin{aligned} \Delta L_w^z &= L_{w\,GPT2w}^z + M_1 * (T_{GNSS} - T_{GPT2w}) + M_2 * (e_{GNSS} - e_{GPT2w}) \\ b.) \quad \Delta L_w^z &= 10^{-6} * \left(k_2' + \frac{k_3}{T_{m\,GPT2w}} \right) * \frac{R_d e}{(\lambda_{GPT2w} + 1)g_m} \end{aligned}$$

Augmentation of ΔL_{w}^{z}

e with ΔL_w^z : 0.85

M1 = 5*10⁻⁴ [m/°C⁻¹] M2 = 0.0092 [m/hPa⁻¹]

If user measures T and
$$e =>$$
 improve ΔL_w^z :
 $\Delta L_w^z = L_{w_{GPT2w}}^z + M_1 * (T_{GNSS} - T_{GPT2w}) + M_2 * (e_{GNSS} - e_{GPT2w})$

GNSS Data:

2016/02/10

- 55 globally distributed IGS stations
- 4 epochs per day in 2013
- zenith total delay (ΔL^{z}) from IGS final tropospheric SNX-TROPO

 $p \rightarrow Extrapolation / Saastamoinen \rightarrow \Delta L_h^z$

 $\Delta L_w^z = \Delta L^z - \Delta L_h^z =>$ Considered as "true" values

Results

Comparison of "true" ΔL_w^z from IGS with reproduced ΔL_w^z :

• Mean absolute difference in ΔL_w^z (averaged over all stations and epochs)

	ΔL _w ^z [cm] (1)	ΔL _w ² [cm] (2)	
empirical only (= GPT2w)	2.8	2.8	$=mean(\Delta L^{z}_{w_{IGS}}-\Delta L^{z}_{w_{GPT2w}})$
empirical + T	2.7	2.6	$= mean\left(\Delta L_{w_{IGS}}^{z} - \Delta L_{w_{GPT2w_{MOD}}(2)}^{z} \right)$
empirical + T and e (a)	<u>2.0</u>	<u>2.1</u>	$= mean\left(\Delta L_{w_{IGS}}^{z} - \Delta L_{w_{GPT2w_{MOD}}(3a)}^{z} \right)$
empirical + T and e (b)	2.0	2.1	$= mean\left(\Delta L^{z}_{w_{IGS}} - \Delta L^{z}_{w_{GPT2w_{MOD}}(3b)} \right)$

• Correlation coefficient (averaged over all stations and epochs)

	Corr. Coeff. (a)	Corr. Coeff. (b)
empirical only (= GPT2w)	0.70	0.73
empirical + T	0.73	0.76
empirical + T and e (a)	<u>0.86</u>	<u>0.86</u>
empirical + T and e (b)	0.86	0.86

- GPT2w well suited for site-augmented approach using in situ measurements of T and e
- in situ measurement of T yields small improvement in zenith wet delay ΔL_w^z (~5%)
- additional in situ measurement of e yields significant improvement in zenith wet delay ΔL_w^z (~30%)
 => not much difference which formula is used for e

2016/02/10

• In general, best performance of site-augmented GPT2wis achieved in dry regions

