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Galileo Clock Parameters in the Sun-fixed Frame 
(daily time drift/bias removed)
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Comparison of SLR and Galileo Clock

STD(MGEX CLOCK)=20.7 mm

STD(Simulated CLOCK)=15.5 mm

STD(Orbit)=14 mm

STD(SLR)=25.3 mm

Very good agreement between SLR and Galileo Clock

Galileo clock is showing smaller 
standard deviation 
compared to SLR! 

(MGEX and ground test) 
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Relation Between Clock, SLR Bias and Orbit Translation (geocenter)
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albedo? (wrong sign! increases the SLR bias)
antenna thrust? (wrong sign! increases the SLR bias)

Orbit Translation

SLR Bias:
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Thermal Re-Radiation Acceleration
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Solar Panel: Satellite Body:

Thermal Re-Radiation Effect and Thermal Inertia (Yarkovsky Effect)

Thermal (infrared) re-radiation acceleration
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Thermal Re-Radiation Effect and Thermal Inertia (Yarkovsky Effect)
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Estimated thermal inertia = 4.7 min

radial

along

across

( , , )i i i i ix f A B C n =

ì üï ïï ïï ïï ïD = í ýï ïï ïï ïï ïî þ(Colombo, 1989)

radial

along

across

cos sini i i i ia A nt B nt C =

ì üï ïï ïï ïï ïD = + + í ýï ïï ïï ïï ïî þ

SLR Residuals (1/2 draconic year)

Hill Equations: 
exact solution for the periodic (orbit) acceleration 

SL
R 

Re
sid

ua
ls 

[m
]



IGS Workshop 2016, 8 – 12 February 2016, University of New South Wales, Sydney, Australia

MGEX
- time drift/bias removed

MGEX (connected day boundaries)
Simulated (ground test)

Simulated (ground test)
- time drift/bias removed

Simulated (ground test)
- time drift/bias removed
- connected day boundaries

Allan Deviation 

flicker floor
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Clock Noise Model: 
Overlapping Allan Variance from the Ground Test

Ground test of the Galileo H-Maser 

Noise model function

White phase noise:      9.8×10-13 short-term <10 s

White frequency noise: 5.9×10-13 short-to-medium term

Flicker frequency noise: 7.9×10-16 long-term >6 h

Frequency drift:  1.2×10-20/s (from flight model test)
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J2 Periodic Relativistic Effect

J2 Periodic Relativistic Correction:

Amplitude=18 mm

MGEX:

(Kouba, 2004)

Simulated Clock:
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Gravitational Potential of Sun and Moon

After removing daily time drift/biasAccumulated time over 7 days

(Petit and Luzum, 2010)

Sun: 1 mm (×2 orbit)
Moon: 0.4 mm (×2 orbit)
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Proper time of the clock:

contribution from Sun and Moon:
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Effect of the Earth’s Magnetic Field

Magnetic Sensitivity: 
(as measured during ground tests)

<3×10-13/Gauss      
(1 Gauss =10-4T)

Linear model (time drift/bias) removed

(Boving et al., 2009) 

IGRF model: 
total magnetic field variation 300-550 nT max. effect < 0.8 mm

assuming the orientation of the Galileo maser cavity 
along the satellite X-axis (that never faces Sun) 

IGRF model: 

X-axis
X-axis
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Thermal Sensitivity

Thermal Flux Balance
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Clock Thermal Sensitivity: 
(as measured during ground tests) 

≤2×10-14/°C (Boving et al., 2009) 

(Mattioni et al., 2002)
ground platform temperature variations of 5°C

temperature stabilized within 3 m°C (by cavity thermal control)

Δf/f <<10-15

Satellite Surface Temperature 
Along the Orbit:

thermal balance:
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In addition: 
orientation of the Galileo maser cavity is 

along the satellite +X-axis 
(that never faces the Sun)
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• Thermal re-radiation (and thermal inertia) can explain the distinct clock/orbit pattern 
over a draconic year!

• SLR  bias in Galileo (and GPS) orbits can be explained by orbit shift opposite to the Sun direction 
due to the thermal re-radiation of the satellite body (SRP is too small for satellite body).

• Geometrical Mapping of Orbit Perturbations using onboard GNSS clock is a new technique to monitor orbit 
errors and was successfully applied to the modelling of thermal re–radiation acceleration (thermal inertia)

• Galileo clock (MGEX and ground test) is showing smaller standard deviation compared to SLR 

• Simulated Galileo residual clock parameters show a standard deviation of σ=15.5 mm, when time bias and time 
drift (linear model) is removed over 24 h intervals from the simulated epoch-wise Galileo clock parameters over 
10 days, whereas this standard deviation is reduced to σ =11.2 mm when the linear model is removed every 14 h 
(orbit period), down to σ =2.7 mm after time bias and time drift removal on the 1 h.

• The main perturbation affecting the Galileo clock parameters for high Sun elevation (>60°) is the the periodic 
relativistic effect due to J2 gravity field coefficient (amplitude of about 18 mm)

• Accumulated time along the Galileo orbit due to the gravitational potential of Sun and Moon after removing daily 
time bias and time drift shows distinct 2x per orbit effect below 0.4 mm for the Sun and 1 mm for the Moon 
potential. 

• Environmental effects, such as variations in temperature and magnetic field were integrated along the orbit, but 
did not give a significant impact on the Galileo residual clock parameters. The max. effect of magnetic field is 
below 0.8 mm whereas temperature perturbations are well below 1×10-15.

Conclusions
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Absolute Code Biases: DCBs Without TEC Maps

Absolute 
Code Bias 

on P1

IGS Clock Convention 
(”Iono-Free Clocks” 

based on P1 and  P2 )
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Absolute Code Biases with Third Frequency

Iono-Free 
Linear Combinations:
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IGS Clock Convention (”Iono-Free Clocks”)

Two-frequency Ambiguity-Free LC 
(previous slide)



IGS Workshop 2016, 8 – 12 February 2016, University of New South Wales, Sydney, Australia

CODE DCBs vs. DCBs Based on the Absolute Code Biases


