Thermal Re-Radiation Acceleration in the GNSS Orbit Modelling Based on Galileo Clock Parameters

Drazen Svehla¹

M. Rothacher¹, L. Cacciapuoti²

¹ETH Zurich, Institute of Geodesy and Photogrammetry, Switzerland ²ESA/ESTEC, Directorate of Science and Robotic Exploration, Noordwijk, Netherlands

IGS Workshop 2016, 8 - 12 February 2016, University of New South Wales, Sydney, Australia

Galileo Clock Parameters in the Sun-fixed Frame (daily time drift/bias removed)

Thermal inertia

w.r.t. Sun

Comparison of SLR and Galileo Clock

Relation Between Clock, SLR Bias and Orbit Translation (geocenter)

SLR Residuals ="observed" - "calculated"

SLR Bias: $\overline{\delta}_{SLR} = \overline{\delta}_{const} + \frac{\sum n_i \cdot A \cos \varepsilon_i}{\sum n_i} = -2.4 \ cm - 4.1 \ cm = -6.5 \ cm$

albedo? (wrong sign! increases the SLR bias) antenna thrust? (wrong sign! increases the SLR bias)

Thermal Re-Radiation Acceleration

Solar Panels

absorptivity

Satellite Body

Thermal Re-Radiation Effect and Thermal Inertia (Yarkovsky Effect)

Thermal Re-Radiation Effect and Thermal Inertia (Yarkovsky Effect)

Estimated thermal inertia = 4.7 min

SLR Residuals (1/2 draconic year)

Allan Deviation

Clock Noise Model: Overlapping Allan Variance from the Ground Test

Clock Model: MGEX vs. Simulated

			Simulat	ed Ga	lileo H	-maser	(onl	y clock	noise)		
1			Simu	lated G	alileo H							
polynomial	Ν	0.2 h	0.25 h	0.5 h	1.0 h	1.5 h	6 h	12 h	14 h	24 h	Polynomial removed:	
	1	1.2	1.4	2.0	2.7	3.4	6.8	9.3	11.2	15.5	→ N=1 Linear model	
	2	1.0	1.1	1.5	2.2	2.7	5.7	7.7	8.8	10.3	→ N=2 Quadratic model	
	3	0.8	0.9	1.3	1.9	2.3	4.7	6.5	7.8	9.8	→ N=3	
	4	0.7	0.8	1.2	1.7	2.1	4.3	5.8	6.6	8.7	► N=4	
	5	0.8	0.9	1.1	1.5	1.9	3.8	5.2	5.6	7.8	► N=5	
					MGE	X (AIU	B)				-	
	MGEX (AIUB) Clock Parameters, (σ in mm)											
	Ν	0.2 h	0.25 h	0.5 h	1.0 h	1.5 h	6 h	12 h	14 h	24 h		
polynomial	1	-	1.8	2.9	4.2	5.3	10.9	16.2	18.3	20.2		
	2	-	-	2.3	3.7	4.2	8.3	12.5	14.1	17.8		
	3	-	-	1.8	3.1	3.8	7.1	10.4	12.4	16.9	Ground network noise:	
	4	-	-	1.3	2.8	3.4	6.4	9.3	10.4	12.9	Ground network noise.	
	5	-	-	-	2.8	3.2	5.6	8.5	9.6	11.9	PSD of residual clock parameters 96-106/2013	
				Г							10 ² 10 days orbit 7 h	
_	$DIFFERENCE = \sqrt{MGEX^2 - SimulatedHmaser^2}$											
	Difference MGEX-Simulated, (σ in mm)											
	Ν	0.2 h	0.25 h	0.5 h	1.0 h	1.5 h	6 h	12 h	14 h	24 h		
polynomial	1	-	1.1	2.1	3.2	4.0	8.5	13.3	14.5	13.1		
	2	-	-	1.7	2.9	3.2	6.1	9.8	11.0	14.4	10 ⁻⁴	
	3	-	-	1.2	2.4	3.0	5.3	8.1	9.7	13.8		
	4	-	-	0.5	2.2	2.7	4.7	7.3	8.1	9.6	10^{-6} 10^{-7} 10^{-1} 10^{0} 10^{1} 10^{2}	
	5	-	-	-	2.3	2.6	4.2	6.7	7.9	9.0	Frequency [Cycles per Orbit]	

J₂ Periodic Relativistic Effect

Accumulated time over 7 days

After removing <u>daily</u> time drift/bias

Effect of the Earth's Magnetic Field

Magnetic Sensitivity:

(as measured during ground tests)

<3×10⁻¹³/Gauss

(Boving et al., 2009)

 $(1 \text{ Gauss} = 10^{-4} \text{T})$

IGRF model:

Linear model (time drift/bias) removed

assuming the orientation of the Galileo maser cavity along the satellite X-axis (that never faces Sun)

Thermal Sensitivity

Satellite Surface Temperature Along the Orbit:

thermal balance:
$$\alpha \cdot J_{Solar} = \varepsilon \cdot J_{re-radiated}$$

$$\alpha \cdot \underbrace{\frac{3.856 \times 10^{26}}{4\pi d^2}}_{\text{Solar radiation}} = \varepsilon \cdot \underbrace{5.67 \times 10^{-8} T^4}_{\text{Intensity}}$$

emittance

absorptance

$$\begin{array}{c} \alpha \ / \ \varepsilon \ (\text{black paint}) = 1.08 \\ \alpha \ / \ \varepsilon \ (\text{kapton}) = 0.63 \end{array} \end{array} \rightarrow \begin{array}{c} \text{Ma} \\ \Delta T \end{array}$$

(as measured during ground tests)

≤2×10⁻¹⁴/°C

(Boving et al., 2009)

(Mattioni et al., 2002) ground platform temperature variations of 5°C

temperature stabilized within **3 m°C** (by cavity thermal control)

$$\Delta f/f << 10^{-15}$$

In addition: orientation of the Galileo maser cavity is along the satellite +X-axis (that never faces the Sun)

Max. temperature variation orbit noon-midnight: $\Delta T = 0.07^{\circ}C - 0.08^{\circ}C$

Conclusions

- Thermal re-radiation (and thermal inertia) can explain the distinct clock/orbit pattern over a draconic year!
- SLR bias in Galileo (and GPS) orbits can be explained by orbit shift opposite to the Sun direction due to the thermal re-radiation of the satellite body (SRP is too small for satellite body).
- **Geometrical Mapping of Orbit Perturbations** using onboard GNSS clock is a new technique to monitor orbit errors and was successfully applied to the modelling of thermal re–radiation acceleration (thermal inertia)
- Galileo clock (MGEX and ground test) is showing smaller standard deviation compared to SLR
- Simulated Galileo residual clock parameters show a standard deviation of σ =15.5 mm, when time bias and time drift (linear model) is removed over 24 h intervals from the simulated epoch-wise Galileo clock parameters over 10 days, whereas this standard deviation is reduced to σ =11.2 mm when the linear model is removed every 14 h (orbit period), down to σ =2.7 mm after time bias and time drift removal on the 1 h.
- The main perturbation affecting the Galileo clock parameters for high Sun elevation (>60°) is the the periodic relativistic effect due to J_2 gravity field coefficient (amplitude of about **18 mm**)
- Accumulated time along the Galileo orbit due to the gravitational potential of Sun and Moon after removing daily time bias and time drift shows distinct 2x per orbit effect below **0.4 mm for the Sun** and **1 mm for the Moon potential**.
- Environmental effects, such as variations in temperature and magnetic field were integrated along the orbit, but did not give a significant impact on the Galileo residual clock parameters. The max. effect of magnetic field is below 0.8 mm whereas temperature perturbations are well below 1×10⁻¹⁵.

Absolute Code Biases: DCBs Without TEC Maps

Absolute Code Biases with Third Frequency _

$$L_{lono-free}^{1,2} = \frac{f_1^2}{f_1^2 - f_2^2} L_1 - \frac{f_2^2}{f_1^2 - f_2^2} L_2 = \rho + \lambda_N N_1 + \frac{1}{2} (\lambda_W - \lambda_N) N_W$$

$$L_{lono-free}^{2,5} = \frac{f_1^2}{f_1^2 - f_2^2} L_1 - \frac{f_2^2}{f_1^2 - f_2^2} L_2 = \rho + \lambda_{N(2,5)} N_1 - \lambda_{N(2,5)} N_W + \frac{1}{2} (\lambda_{W(2,5)} - \lambda_{N(2,5)}) N_{W(2,5)}$$

$$Iono-Free Linear Combinations:$$

$$\kappa_1^{of^*} \lambda_N + \kappa_2^{of^*} \lambda_{N(2,5)} := 0$$

$$L_{lono-free}^{of^*} = \kappa_1^{of^*} L_{lono-free}^{1,2} + \kappa_2^{of^*} L_{lono-free}^{1,2}$$

$$= \rho + \frac{\kappa_1^{of^*}}{2} (\lambda_W - \lambda_N) - \kappa_2^{of^*} \lambda_{N(2,5)} N_W + \frac{\kappa_2^{of^*}}{2} (\lambda_{W(2,5)} - \lambda_{N(2,5)}) N_{W(2,5)}$$

$$AF_1 = \rho - \frac{c \cdot f_2}{(f_1 - f_2)^2} N_W + \frac{f_1}{f_1 - f_2} AB_1 + c\delta t - c\delta t^*$$

$$Two-frequency Ambiguity-Free LC (previous slide)$$

$$Two-frequency Ambiguity-Free LC (previous slide)$$

CODE DCBs vs. DCBs Based on the Absolute Code Biases

