Impact of temporal gravity field parameters determined from GNSS satellites on the estimated Earth rotation parameters

Krzysztof Sośnica (1), Adrian Jäggi (1), <u>Rolf Dach (</u>1), Daniela Thaller (2)

(1) Astronomical Institute, University of Bern, Switzerland(2) Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, Germany

IGS Workshop 2014 - Celebrating 20 Years of Service June 23-27 2014, Pasadena, California, USA

Table of contents

Introduction:

- Motivation
- GNSS sensitivity to low-degree Earth's gravity field coefficients
- Solution set-up

Temporal Earth's gravity field from GNSS

- C_{20} and correlation with dynamical orbit parameters
- Other low-degree coefficients

Earth Rotation Parameters (ERPs) & Geocenter

- Pole coordinates
- Pole rates
- Geocenter coordinates

Conclusions

Three pillars of satellite geodesy

Current status:

IGS provides products related to Geometry and Rotation, but not to temporal variations in the Earth's Gravity field.

This solution:

Gravity

Geometry

Parameters related to all three pillars are simultaneously estimated, because they are strongly dependent on each other.

Are GNSS satellites sufficiently sensitive to variations of gravity?

Sensitivity of GNSS solutions to low-degree gravity coeff.

List of estimated parameters & solution set-up

Estimated parameters		GNSS solutions	
		up to 32 GPS and 24 GLONASS satellites	We
Orbits	Osculating elements	a, e, i, Ω , ω , u ₀ (1 set per 3 days)	and sta
	Dynamical parameters	$\begin{array}{c} D_0,Y_0,X_0,X_S,X_C-\text{unconstrained}\\ D_S,D_{C,}Y_S,Y_C-\text{constrained at }10^{-12}\\ (1\text{ set per 3 days})\end{array}$	•
	Pseudo-stochastic pulses	R, S, W (constrained, estimated every 12 ^h)	
Earth rotation parameters		X _P , Y _P , UT1-UTC (Piecewise linear, 1 set per day)	•
Geocenter coordinates		1 set per 7 days	
Earth gravity field		Estimated up to d/o 4/4 (1 set per 7 days)	
Station coordinates		1 set per 7 days	
Other parameters		Troposphere ZD (2h), gradients (24h) and ZTD biases	

We processed 10 years of GPS and GLONASS data using the standard orbit modeling as from CODE with two major exceptions:

- 7-day solutions are generated instead of the 3-day long-arc solutions as for the IGS.
- The Earth's gravity field coefficients up to degree/order 4/4 and geocenter coordinates are simultaneously estimated along with other parameters.

C₂₀ from GPS+GLONASS

GNSS dynamic orbit parameters : Do, Yo, Xo, Xs, Xc

GNSS dynamic orbit parameters : Do, Yo, Xo, Xs, Xc

C₂₁, S₂₁, C₃₀ from GPS+GLONASS

GNSS-derived gravity field parameters agree quite well with the CSR RL05 results (median difference of 8.2.10⁻¹¹), but:

- GNSS-derived parameters show both: the seasonal signals as well as draconitic periods,
- C₂₀ is correlated with orbit parameters in the X direction.

Gravity coefficients benefit from the contribution of GLONASS (after 2008, when the station coverage improves).

satellites

Sośnica et al.: Impact of temporal gravity field parameters determined from GNSS

Question:

How much affected are the GNSS-derived parameters by neglecting the temporal gravity field variations, since GNSS satellites are sufficiently sensitive to recover the temporal variations of Earth's low-degree gravity field ?

X- pole coordinate

For the X pole coordinate:

- the amplitude of the <u>7th harmonic</u> is reduced from 15.9 to 12.2 μas,
- the amplitude of the annual signal is reduced from 12.8 to 6.9 µas,
- the mean offset w.r.t. IERS-08-C04 is reduced from -10.5 to -9.9 µas,

for the solutions without and with estimating gravity field parameters, respectively.

X- pole rate

For the X pole rate:

- the amplitude of the <u>7th harmonic</u> is reduced from 3.5 to 1.8 µas/day,
- the mean offset w.r.t. IERS-08-C04 is reduced from 2.2 to 2.0 µas/day,

for the solutions without and with estimating gravity field parameters, respectively.

Z component of geocenter coordinates (C₁₀)

When estimating the gravity field coefficients and heavily constraining once-per-revolution orbit parameters in the X direction, the Z geocenter coordinate from GNSS solutions (C_{10}):

- is by far less affected by solar radiation pressure modeling,
- is closer to the SLR results

as compared to GNSS solutions without estimating gravity field.

Summary

The GNSS satellites are sufficiently sensitive to low-degree gravity field parameters, to recover the temporal gravity field variations.

The simultaneous estimation of gravity field parameters along with ERPs, station coordinates, troposphere, and other GNSS parameters is feasible.

The empirical orbit parameters in the X direction are correlated with C_{20} , and thus, the X-parameters partly absorb the C_{20} variations. However, not all the gravity variations are absorbed by empirical parameters.

Unabsorbed gravity variations may contaminate the ERP estimates by introducing spurious peaks of seasonal and draconitic signals in the GNSS solutions when not estimating gravity field parameters.

Spurious seasonal and draconitic signals can be reduced by estimating the gravity field along with other GNSS parameters.

Thank you for your attention

IGS Workshop 2014 - Celebrating 20 Years of Service June 23-27 2014, Pasadena, California, USA

