Application of GPS Vertical Positioning to Seasonal Water Variations in California and Postglacial Rebound in Antarctica

Donald Argus

CALIFORNIA Yuning Fu Felix Landerer ANTARCTICA W. Richard Peltier Rosemarie Drummond Angelyn Moore

TECHNICAL ADVANCES JPL GPS Team 2014 IGS Workshop

PART 1 Technical Advances in GPS Vertical Positioning

Scale

INFERENCE SLR estimate of the velocity of CM is uncertain, as evident in the 1.15 mm/yr difference in estimates of **Z** component from distinct data subsets (ARGUS JGR 2012).

14

PART 2 GPS as a High-Resolution Technique for Evaluating Water Resources Available to California

Vertical position of GPS site P310

Seasonal vertical displacement Fall & Winter

OPPORTUNITY

- 500 GPS sites deployed in California since 2007
- PBO built by UNAVCO and funded by NSF and NASA.

Elastic response of Earth's surface to a mass load

Seasonal vertical displacement Fall & Winter

Seasonal water thickness GPS Fall & Winter

rigorous 1/4° Lapacian Fu

Seasonal water thickness change GPS Fall & Winter

Seasonal water thickness GRACE Fall & Winter

GPS resolves water storage at a spatial resolution of 75 km, compared to 300 km from GRACE.

Seasonal water thickness GPS Fall & Winter

Seasonal water thickness NLDAS hydrology model

Seasonal water thickness GPS Fall & Winter

Seasonal water thickness Composite hydrology model

Part 3b ICE-6G_C (VM5a)

in Antarctica

Fits all data: GPS vertical rates, ice thickness changes, relative sea level histories.

SITES USED TO CONSTRAIN PGR 25 East Antarctica 17 West Antarctica

SITES NOT USED 9 northern Antarctica Peninsula 7 Mount Erebus 1 South Shetland plate

17

An elastic model of current ice loss near Pine Island Bay & in northern Antarctica peninsula was constructed.

The 42 sites used are insignificantly affected by current ice loss.

⁴²

Viscous relaxation time

PGR MODEL This straightfoward example illustrates differences between Whitehouse 2012, Argus 2014.

Whitehouse 2012 has twice the relaxation time, half the ice loss compared to Argus et al. 2014.

Deglaciation history

RESULTS ICE-6G has nearly twice the ice loss as W12, IJ05 R2.

ICE-6G has fast ice loss at and after Meltwater Pulse 1B (11.5 ka – 7 ka)

INFERENCE W12 ice loss is too early, IJ05 R2 ice loss is too late.

CONCLUSION

Technical advances in GPS vertical positioning have improved our understanding of:

(1) Water changes in California and

(2) Postglacial rebound in Antarctica and North America.

ARGUS ET AL. JGR 2005 Northern metropolitan Los Angleles is shortening and thickening.

> Puente Hills thrust Slip rate 8 mm/yr Locking depth 12 km