### **Detecting Topological Dark Matter** with GNSS

<sup>1</sup>Geoff Blewitt <sup>2</sup>Andrei Derevianko & Mac Murphy

<sup>1</sup>Nevada Geodetic Laboratory and <sup>2</sup>Department of Physics University of Nevada, Reno

gblewitt@unr.edu http://geodesy.unr.edu http://dereviankogroup.com

# **Dark Matter: What is it?**

#### Only 4% of the Universe is "ordinary"

- 68% is "Dark Energy"
- 27% is "Dark Matter"
- Multiple observational evidence:
  - galactic rotation curves
  - gravitational lensing
- Does not emit/absorb radiation
  - not dark clouds of ordinary matter
- Grand challenge to 21st century physics





## What do we know about Dark Matter?

#### • Galactic DM halo



- mass density 0.3 GeV/cm<sup>3</sup>
   = H atom every 3 cm<sup>3</sup>
- more spherical than disk-like
- non-gravitational interactions must be small

#### Velocity distribution



 Models of 3-D distribution suggest a Maxwellian distribution - like a gas

$$10^{-56} - 10^{-54}$$

$$10^{-7} - 10^{2}$$

M / M<sub>F</sub>

WIMPs Weakly Interacting Massive Particles MACHOS MAssive Compact Halo Objects

Μ

LUX detector

$$10^{-56} - 10^{-54}$$
  
Me  
WIMPS  
Weakly Interacting  
Massive Particles  
Massive Compact  
Halo Objects  
Massive Compact  
Halo Objects









# **Topological Dark Matter (TDM)**

#### As the universe cooled, sequence of phase transitions

- insufficient energy was available to generate heavy particle types, so such particle types would (if unstable) eventually decay away
- leaving behind "ordinary" matter, plus perhaps WIMPS
- Cooling and topological defects
  - Consider ferromagnetism: as metal is cooled below the Curie temperature, magnetic domains spontaneously appear
- Leads to possibility of another type of dark matter
  - topological defects in a new type of light quantum field
  - monopoles, cosmic strings, domain walls,...
  - predicts modulation of fundamental constants, clock frequencies....

## **Detection by Atomic Clocks: Basic Idea**

- Consider TDM as extended stable objects (e.g. domain walls)
- Passage of TDM creates transient in clock frequency
- Integral frequency
   step in clock time



# GPS as a Dark Matter detector: Dark Matter Signature

- Time difference between clocks separated far apart
- Integrated frequency difference
   = box car function
- Time width T = L/v
  - L(GPS) ~ 50,000 km
  - v ~ 300 km/s
  - T ~ 170 seconds



#### Data Analysis Demonstration Using GIPSY OASIS II software from JPL

#### 40 geodetic GPS stations

- IGS-like analysis, except fix satellite orbits to published values
- All clock biases (except reference) estimated every 30 sec



### **Results: Top Performing H-Maser Stations**

24 hours, 2nd order polynomial removed



## **Results: Top Performing H-Maser Stations**

#### 30 minutes, no polynomial removed



### Results: Satellite Rb Clocks

#### 24 hour, 2nd order polynomial removed



## Results: Top-Performing Satellite Rb Clocks

#### 30 minutes, no polynomial removed



### **Quick Look at IGS Clock Products**

#### Example of interesting event on 2007-10-16



## Conclusions

- Atomic clocks in space and on the ground can be monitored with sub nanosecond precision
  - Best H-maser station clock estimates show ~ 0.1 ns residual scatter
  - Best Rb satellite clock estimates show ~ 1 ns residual scatter
  - Demonstrated every 30 sec, but possible every 1 sec
- GPS system may be used as a giant detector for topological dark matter (50,000 km aperture)
  - search for anomalies in clock behavior
  - search for spatially correlated patterns
  - sensitive to DM signal traversing GPS system in >100 s,
     i.e., velocities < 500 km/s, capturing galactic-scale velocities</li>