From the earthquake cycle to mantle structure current and future uses of dense GPS

Piyush Agram
Takeo Ito
Hilary Martens
Angelyn W. Moore
Francisco Ortega
Susan Owen
Bryan Riel
Mark Simons
Zhongwen Zhan

PY09: GNSS-derived Troposphere Delays \& Applications of IGS Products for Geodesy and Geophysics Research

From the earthquake cycle to mantle structure current and future uses of dense GPS

- Using data from $\mathrm{O}\left(10^{3}\right)$ sites in Japan for inter-/co-/ post-seismic deformation associated with the 2011 Mw 9 Tohoku-oki, Japan earthquake
- Using Earthscope/PBO to image aseismic transients and their relationship to tremor
- Using dense networks to measure the response to ocean tidal loads and thus constrain depth variations in elastic and density parameters in the upper mantle.

Seismogenic Behavior of Subduction Megathrusts

A sampling of important intertwined questions

- Do major seismogenic "asperities" only slip seismically?
$\frac{\mathbb{0}}{\boldsymbol{\omega}}$ - Do creeping segments only creep?
- Role of conditional stability (e.g., near trench)?
- What are the relationships between post-seismic creep, transients, tremor and seismicity (rate, repeat intervals, location...)?

1 sample/sec GPS observations - sidereally filtered

2011 Tohoku-Oki, Japan

 Co-seismic slip:- 1sec GPS, DART, seafloor geodesy
- 80 m peak slip over a small region
- M7. 8 aftershock

Post-seismic afterslip:

- Total time $=1.5$ years
- Negligible overlap of co-/postseismic
- Post-seismic pattern ~constant

Post-seismic (1.5 yrs)

Inter-seismic

F. Ortega, Ph.D. thesis

Slip transients and Tremor: Cascadia

Finding Transients

- With no a priori information on the physical mechanisms responsible for transients, we cannot only assume time functions corresponding to specific physical descriptions, i.e. exponential or logarithmic decay
- Use a flexible time parameterization using functions that resemble our expectation of transients (over-complete dictionary of "behaviors")
- Secular and periodic components + integrated 3rd-order B-splines of different scales and center times (not orthogonal)
$\mathbf{G}_{\mathrm{NxP}}$

$\mathrm{m}_{\mathrm{Px} 1}$
$\mathbf{d}_{N \times 1}$

$$
\left[\begin{array}{c}
m_{0} \\
m_{1} \\
\vdots \\
m_{P-1}
\end{array}\right]=\left[\begin{array}{c}
d_{0} \\
d_{1} \\
\vdots \\
d_{N-1}
\end{array}\right]
$$

Penalize the \# of non-zero coefficients in $\mathbf{m}: \mathbf{m}=\operatorname{argmin}\|\mathbf{d}-\mathbf{G m}\|_{2}^{2}+\lambda\|\mathbf{m}\|_{0}$

Sparsity-Promoting Regularization

- Penalize the number of non-zero coefficients in \mathbf{m} :

$$
\mathbf{m}=\underset{\mathbf{m}}{\operatorname{argmin}}\|\mathbf{d}-\mathbf{G m}\|_{2}^{2}+\lambda\|\mathbf{m}\|_{0}
$$

where $\|\cdot\|_{0}=L_{0}$-pseudo-norm, or the "counting norm"

- Sparse-compression: represent time series by a small set of Bi-splines
- But using the Lo-pseudo-norm is a hard combinatorial problem
- Use L_{1}-norm relaxation (iterative reweighting) to make problem convex (Candes et al., 2007):

$$
\begin{aligned}
\mathbf{m} & =\underset{\mathbf{m}}{\operatorname{argmin}}\|\mathbf{d}-\mathbf{G m}\|_{2}^{2}+\lambda\|\mathbf{m}\|_{1} \\
\|\mathbf{m}\|_{1} & =\sum_{i}\left|m_{i}\right|
\end{aligned}
$$

Slip transients and Tremor: Cascadia

Spatial Sparsity Weighting for Cascadia

ALBH GPS Time Series

- Use sparsity-promoting regularization to fit time series and determine elements of \mathbf{m} with the largest amplitudes (effectively we are compressing the data)
- Form reduced \mathbf{G} and estimate reduced \mathbf{m} using standard least squares:

$$
\tilde{\mathbf{m}}=\left(\tilde{\mathbf{G}}^{\top} \mathbf{C}_{d}^{-1} \tilde{\mathbf{G}}\right)^{-1} \tilde{\mathbf{G}}^{\top} \mathbf{C}_{d}^{-1} \mathbf{d}
$$

\leftarrow Episodic SSE reconstruction with only 6 Bi-splines
\leftarrow Bi-spline scalogram: Localized, high amplitudes for short duration Bi-splines

Posterior Uncertainties

- Standard least squares formulation allows for estimation of posterior covariances for Bi-spline coefficients:

$$
\tilde{\mathbf{C}}_{m}=\left(\tilde{\mathbf{G}}^{\top} \mathbf{C}_{d}^{-1} \tilde{\mathbf{G}}\right)^{-1}
$$

- Extend to posterior covariances for data fit:

$$
\tilde{\mathbf{C}}_{d}=\tilde{\mathbf{G}} \tilde{\mathbf{C}}_{m} \tilde{\mathbf{G}}^{\top}
$$

\leftarrow Posterior data covariance matrix for modeled transient displacement

Cascadia 2010 SSE: Slip rate + tremor

Analysis and models: Bryan Riel

Issues (not addressed today)

- Controls on location and temporal evolution? Role of fluids? Ubiquitous, yes/no/why?
- Relationship to regions of big EQ and eventual post-seismic deformation?
部 Relationship to forearc/slab structure?

Approach

- Detect/reconstruct/model transient ground deformation in GPS time series due to SSE using sparsity-based approaches
- Time-dependent slip using Network Inversion Filter: Segall and Matthews (1997)
- Slab interface: McCrory et al. (2004)
- Tremor epicenter locations: Pacific Northwest Seismic Network (http://www.pnsn.org/tremor)

Cascadia 2010 SSE: Slip rate + tremor

Analysis and models: Bryan Riel

Issues (not addressed today)

- Controls on location and temporal evolution? Role of fluids? Ubiquitous, yes/no/why?
- Relationship to regions of big EQ and eventual post-seismic deformation?

离 - Relationship to forearc/slab structure?

Approach

- Detect/reconstruct/model transient ground deformation in GPS time series due to SSE using sparsity-based approaches
- Time-dependent slip using Network Inversion Filter: Segall and Matthews (1997)
- Slab interface: McCrory et al. (2004)
- Tremor epicenter locations: Pacific Northwest Seismic Network (http://www.pnsn.org/tremor)

Measuring OTL response with dense GPS networks

0.00 hours

OTL response as an opportunity: Constraining properties of the upper mantle

Next

- Confirm with much longer time series
- Improve estimates of positions
- Explore sensitivity to:
- Newer OTL models
- Approach to removing solid earth tides
- Improve geodynamical interpretation
- Explore other regions (1D)
- Go to 3D

For each cGPS site, we should establish empirical tidal corrections and use to improve transient detection

Ito \& Simons, 2011

M2 Tide Predictions 0.00 hours

M2 Tide Observations 0.00 hours

Observations

Forward Model

Residuals

PREM \& FES2012

Goal: Elastic and density structure of a craton

From the earthquake cycle to mantle structure current and future uses of dense GPS

- Tohoku-oki
- Relatively constant pattern of post-seismic after slip (with notable exceptions)
- Lack of overlap between co-seismic/post-seismic distribution of fault slip
- Consistency of co-seismic and inter-seismic
- Consistency of co-seismic and post-seismic
- Importance of high-rate GPS (and in near real time)
- Cascadia aseismic transients
- New rigorous methods for automatic transient detection based on sparsity and overcomplete dictionaries.
- Slip transients and tremor co-located in space and time
- OTL load response to probe upper mantle structure
- Ability to separate depth variation of density and elastic moduli.
- Needs careful analysis of sensitivity to processing approach

