Using GNSS Tracking Networks to Map Global Ionospheric Irregularities and Scintillation

Xiaoqing Pi Anthony J. Mannucci Larry Romans Yaoz Bar-Sever

Jet Propulsion Laboratory, California Institute of Technology

© 2014 California Institute of Technology. United States Government Sponsorship Acknowledged.

IGS Workshop, Caltech, Pasadena, California, June 26, 2014

$$\mathrm{S}_4(f) = \sqrt{\frac{\langle I^2 \rangle - \langle I \rangle^2}{\langle I \rangle^2}} \propto f^{-1.5}$$

$$\sigma_{\phi}(f) = \sqrt{\langle \phi^2 \rangle - \langle \phi \rangle^2} \propto f^{-1}$$

ROTI =
$$\sqrt{\langle \text{ROT}^2 \rangle - \langle \text{ROT} \rangle^2}$$

ROT = $C \frac{\Phi_I (t + \Delta t) - \Phi_I (t)}{\Delta t}$

- S₄ and σ_{ϕ} indices amplitude and phase scintillation, respectively
 - \succ *I* detrended signal intensity
 - $\blacktriangleright \phi$ detrended signal phase
 - > $I \& \phi$ data sampled at 20 ms (50 Hz)
 - Frequency dependent
 - Measurements of phase scintillation susceptible to Trn & Rcv oscillator noise

• ROTI – Rate of TEC index

- A measure of ionospheric TEC fluctuations - irregularities
- ROT detrended rate of TEC derived from dual-frequency phase data
- ROT data typically sampled at 30 sec
- In principle independent of frequency and not susceptible to local oscillator quality

Examples of Ionospheric Irregularities Measured Using GPS Signals

TEC perturbations, and ROT fluctuations as well as ROTI derived from dual-frequency GPS data collected from an IGS site in Yellowknife, Canada, on 16 May 1995. [Ref#1, 1997]

Plasma or TEC bubbles and ROT fluctuations observed from Brazil during 18 November 2007. [Ref#2, 2011]

June 26, 2014 Pi et al.: Using GNSS Networks to Map Global Ionospheric Irregularities

Global Map of Ionospheric Irregularities

A global map of ionospheric irregularities measured using ROTI.

Solution Global grid: $\Delta LON \times \Delta LAT = 5^{\circ} \times 2.5^{\circ}$

Temporal resolution: 15 minutes [Ref#3, 2012; Ref#4, 2013]

Polar Map of Ionospheric Irregularities and Scintillation

- A polar ROTI map measuring ionospheric irregularities and scintillation during a major geomagnetic storm
- Temporal resolution: 15minute interval
- Grid resolution: $\Delta LON \times \Delta LAT = 5^{\circ} \times 2.5^{\circ}$
- IGS and CORS networks

[Ref#5, 2012]

June 26, 2014 Pi et al.: Using GNSS Networks to Map Global Ionospheric Irregularities

A Major Event of Mid-Latitude Ionospheric Scintillation during a Storm

Mid-latitude lonospheric phase scintillation occurred in most of the United States during a major geomagnetic storm on 4/6/2000, observed using ROTI derived from the CORS GPS data. [Ref#4, 2013]

Comparison of S₄(L1) and ROTI (Equatorial)

Beach and Kintner [Ref#6, 1999]

Comparison of S₄(L1), σ_{ϕ} (L1), and ROTI Observation Site: Yellowknife, Canada (Polar)

June 26, 2014

Pi et al.: Using GNSS Networks to Map Global Ionospheric Irregularities

- σ_φ(L1)
 Derived from 50-Hz phase
 (φ) data;1-minute cadence
- <_{\sigma_\phi}>

Averaged over 15 minutes

• ROT & ROTI

ROT: 1-minute cadence; ROTI values are computed for the same time intervals as $<\sigma_{\phi}>$.

Results

- ROT and ROTI capture phase scintillation period very well
- Magnitude of ROTI (TEC fluctuations), σ_φ (phase scint.) and S₄ (amplitude scint.) can be different

Artifacts in PALSAR Images along an ALOS Path over South America

June 26, 2014

Pi et al.: Using GNSS Networks to Map Global Ionospheric Irregularities

Supporting Studies of Ionospheric Impact on Spaceborne InSAR Imagery

PALSAR Imagery

- Phased Array type L-band Synthetic Aperture Radar
- InSAR images affected by ionospheric irregularities and scintillation, shown as artifacts in radar images

Regional Map of Ionospheric Irregularities and Scintillation (RMIIS)

- Ground-based GPS receiver networks (31 stations)
- 15-min ROTI maps
- IPP at 400 km ALT
- Grid resolution: 3.75° x 2.5° (∆LON x ∆ LAT)

Impact of Scintillation on Positioning

June 26, 2014

Pi et al.: Using GNSS Networks to Map Global Ionospheric Irregularities

Summary

- Dual-frequency GPS phase data collected from existing GNSS networks have been used to derive ROT and ROTI measurements
- Analyses by various groups have shown that ROTI is a good occurrence indicator for L-band amplitude and phase scintillation, though their magnitudes can be different depending on plasma physics processes and radio propagation environment in different latitude regions
- ROTI maps have been applied to monitoring global and regional activities of ionospheric irregularities with a 15-min temporal resolution continuously
 - A significant event of irregularities and phase scintillation occurred in most of the contiguous United States and Alaska under space weather disturbances has been recorded using ROTI maps
- The GPS-based ionospheric irregularity measurements have been applied to various studies, including the impact of ionospheric scintillation on Earth science remote sensing imagery and GPS-based positioning
- Real-time ROTI maps have been tested at JPL, and U.S. regional real-time ROTI maps will soon be made available to the public to serve space weather monitoring and prediction

References

- 1. Pi, X., A. J. Mannucci, U. J. Lindquister, and C. M. Ho, Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett, Vol.24, No.18, pp.2283-2286, 1997.
- 2. Pi, X., A. Freeman, B. Chapman, P. Rosen, and Z. Li (2011), Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar, J. Geophys. Res., 116, A04303, doi:10.1029/2010JA016267.
- Xiaoqing Pi, Franz J. Meyer, Kancham Chotoo, Anthony Freeman, Ronald G. Caton, and Christopher T. Bridgwood, Impact of Ionospheric Scintillation on Spaceborne SAR Observations Studied Using GNSS, ION GNSS, pp.1998-2006, 2012.
- Xiaoqing Pi, Anthony J. Mannucci, Bonnie Valant-Spaight, Yoaz Bar-Sever, Larry J. Romans, Susan Skone, Lawrence Sparks, and G. Martin Hall, Observations of Global and Regional Ionospheric Irregularities and Scintillation Using GNSS Tracking Networks, ION Pacific PNT, pp.752-761, 2013.
- 5. Xiaoqing Pi, Measuring Ionospheric Irregularities globally by the Rate of TEC Index and GNSS Networks, Space Weather Workshop, Boulder, CO, April 27, 2012.
- 6. Beach, T.L. and Kintner, P.M. (1999). Simultaneous Global Positioning System observations of equatorial scintillations and total electron content fluctuations. *Journal of Geophysical Research 104: doi: 10.1029/1999JA900220. issn: 0148-0227.*