1

Orbit and Clock Determination - Galileo

L. Prange⁽¹⁾, P. Steigenberger⁽²⁾, M. Uhlemann⁽³⁾, S. Loyer⁽⁴⁾, T. Springer⁽⁵⁾

⁽¹⁾ Astronomical Institute, University of Bern, Switzerland

- ⁽²⁾ Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
- ⁽³⁾ GeoForschungsZentrum Potsdam, Germany
- ⁽⁴⁾ Collecte Localisation Satellites, Toulouse, France
- ⁽⁵⁾ European Space Operations Centre, Darmstadt, Germany

Contents

IGS

- Galileo mission status
- The IGS MGEX network
- MGEX Galileo products
 - Products availability
 - AC processing strategies
- MGEX Galileo product validation
 - Orbit validation
 - Clock validation
- Summary and outlook

Galileo Status

- Four Galileo In-Orbit Validation (IOV) satellites in orbit
 - E11 and E12 launched in October 2011
 - E19 and E20 launched in October 2012
- First FOC satellite dual launch planned for August 2014

IGS

The IGS MGEX Network

ftp://cddis.gsfc.nasa.gov/pub/gps/data/campaign/mgex/ http://mgex.igs-ip.net/

• Nearly all MGEX stations are tracking Galileo

MGEX products availability

5

Status: 15-June-2014

Satellite system IDs according to the content of the precise orbit files at ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex/

MGEX Galileo products availability

Satellite system IDs according to the content of the precise orbit files at ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex/

IGS

6

MGEX Galileo analysis centers

Institution	Software	Diff. LVL	Phase center	Arc- length	CLK sampling
CNES/CLS (GRM)	CNES POD GINS	zero	MGEX	30 h	15 min
CODE (COM)	Bernese 5.3	double (orbit) zero (clock)	ESA	3 d	5 min
ESOC (ESM)	NAPEOS	zero	ESA	1 d	5 min
GFZ (GFM)	EPOS.P8	zero	ESA	3 d	5 min
TUM (TUM)	Bernese 5.0	zero	MGEX	3 d	15 min

http://igs.org

IGS Workshop, 23-27 Jun. 2014, Pasadena

IGS

MGEX Galileo product validation

IGS

8

"MGEX data analysis at CODE – current status", Prange et al., presented at the EGU 2013, Vienna:

 Validation of COM, TUM, GRM orbits for different time intervals in 2012 (long arc fit and SLR residuals)

"Quality assessment of Galileo Orbit and Clock Products of the IGS Multi-GNSS Experiment (MGEX)", Steigenberger et al., presented at the AGU 2013, San Francisco

and

"Galileo Orbit and Clock Quality of the IGS Multi-GNSS Experiment", Steigenberger et al. (2014), accepted for publication in Advances in Space Research:

- Overview, description, validation of MGEX Galileo orbit and clock products
- Validation time interval: 20 weeks from 28 April till 14 September 2013 (day of year 118 – 257/2013, GPS week 1738 – 1757)

=> validation results presented here again (see following slides)

Orbit validation

Day boundary discontinuities

 3D position difference between consecutive days at midnight

2-day orbit fit RMS

- 2-day orbit fitted through positions of 2 consecutive days
- 3D RMS of 2-day arc w.r.t. original orbits

Satellite Laser Ranging residuals

• Independent optic technique

Orbit comparisons

ESA

 Differences between two ACs in radial, along-track, crosstrack direction

9

Common time period considered, median values given in **cm**

	Satellite	COM	GFM	GRM	TUM
Day Bounda Discontinuitie	E11	4.4	8.1	20.9	5.8
	ies E12	4.7	8.0	20.7	6.7
	E19	4.8	8.9	28.0	6.3
	E20	4.7	8.5	22.1	6.1
	Satellite	COM	GFM	GRM	TUM
2-day Orbit Fit RMS	E11	1.4	2.7	6.6	1.3
	E12	1.4	2.7	6.4	1.5
	E19	1.5	2.9	6.4	1.5
	E20	1.5	3.0	6.7	1.6

http://igs.org

http://igs.org

Mean bias and standard deviation (STD) of SLR residuals

http://igs.org

Orbit differences between ACs for E11

COM vs. GFM

COM vs. GRM

http://igs.org

Broadcast orbit validation

Orbit Comparison E11: Broadcast vs. TUM

Broadcast orbit validation

http://igs.org

Linear fit of COM clock estimates for E12

IGS

IGS

Linear fit of COM clock estimates, elevation of the Sun above the orbital plane for E12

IGS

Linear fit of COM clock estimates, elevation of the Sun above the orbital plane, and eclipse seasons for E12

IGS

http://igs.org

IGS Workshop, 23-27 Jun. 2014, Pasadena

22

http://igs.org

IGS Workshop, 23-27 Jun. 2014, Pasadena

23

http://igs.org

Biases

Galileo–GPS ISB for COM solution (frequencies: L1+L2 GPS, L1+L5 GAL)

Summary and outlook

IGS

- MGEX Galileo products with different features available (short latency: TUM; all GNSS included: ESM; long time series: COM, GFM, TUM, GRM)
- Precision of Galileo MGEX products is generally below the one decimeter level
- Radial accuracy as evaluated by SLR is at the one decimeter level with a systematic bias of about 5 cm
- Galileo Broadcast orbits have a meter level accuracy
- Systematic effects visible in orbits and clocks of all ACs due to orbit modeling problems (radiation pressure)
- **Modeling deficiencies** due to lack of knowledge about the satellites:
 - Satellite antenna phase center offsets and variations
 - Attitude behavior, satellite dimensions, and surface properties