GNSS Real-Time Developments at GFZ

PY03 – IGS Real-Time Service on the way to FOC

<u>Mathias Fritsche</u>, Maorong Ge, Hua Chen, Xingxing Li, Xiaolei Dai

GFZ - German Research Centre for Geosciences Potsdam

Outline

- 1. Real-Time Positioning Service at GFZ
- 2. Future requirements and challenges
- 3. Integration of Carrier Range Concept

GFZ Real-Time Positioning Service

GFZ Real-Time Positioning Service

GFZ Real-Time Positioning Service

Future requirements and challenges

Do we need a multi-GNSS multi frequency (2+) global PPP service for the IGS?

- Use of different coordinate references by individual system provider
- Use of different time scales
- Combination must be performed on user side
- Limitations in terms of accuracy and consistency and possibly also for specific applications
- Common treatment of different GNSS and frequencies in an integrated orbit and clock estimation

Future requirements and challenges

More GNSS Constellations

- Increasing number of satellites
 (GPS: 32, GLONASS: 24, Galileo: 4, Beidou: 14)
- Additional new signals

Increasing number of network stations

- Consistency among global and site-specific PPP results

Challenges

- Inter system biases
- Additional frequencies
- Computational burden (number of simultaneous parameters)
- Efficiency for high update rates

Multi-GNSS Real-Time PPP

Simulated real-time PPP environment

- Validation of standard PPP approach
- Strategy: GPS-only, GPS+GLONASS+Galileo+Beidou

Multi-GNSS Real-Time PPP

Multi-GNSS Real-Time PPP

	Parameters	Number	
	Satellite clocks	~ 74	
	Receiver clocks	~ 120	
	ZTD	~ 120 (per 120 minute)	
	Horizontal gradient	~ 240 (per 1440 minute)	
	Ambiguity	~ 1200	
	Inter-system Biases	~ 110 (1 par per system per station, GPS as reference)	fixed
Ţ	Inter-frequency Biases	~ 2210 (1 par per GLONASS satellite and station, GPS as reference)	Process time:
	sum	~ 4074	~ 15 sec
>	sum	~ 1754	~ 2 sec

Motivation for Carrier Ranges (Blewitt et al.)

- Exponential increase of number of ambiguities with additional stations and satellites
- Undifferenced carrier phase ambiguity resolution
- Recover and re-introduce carrier ranges

Advantage of using Carrier Ranges

- Highly efficient due to station-wise computation
- Approach 1: multi-GNSS initial clock solution and multi-GNSS clock solution based on carrier ranges
- Approach 2: system by system initial clock solution and multi-GNSS clock solution based on carrier ranges
- Initial clock and UPD solution based on selected global station network
- Additional stations in the step of carrier range recovery

Conclusions

- Multi-GNSS real-time PPP service provides shorter convergence time and better accuracy at client side
- Proposed processing scheme including carrier ranges shows to be a feasible concept
- Significant reduction of computational burden using carrier ranges
- Integrated orbit and clock estimation for multisystem and multi-frequency GNSS applications

Thanks for your attention

