

Preparing for the Future – The IGS in a Multi-GNSS World

O. Montenbruck

DLR/GSOC

http://igs.org

1

- ... a federation of more than 200 institutions and organizations worldwide
- ... a Service of the International Association of Geodesy (IAG) founded in 1994
- ... operational since more than 20 years
- ... the premier source of the highest-quality GNSS data, products, and related standards and conventions
- ... in support of many applications that benefit the scientific community and society
- ... following an open data policy
- ... open to everybody to participate

The Changing World of Satellite Navigation

- Two legacy systems, four new constellations, numerous SBAS satellites
- Inflationary increase in frequencies and signals
- Need for active investment into
 - Infrastructure
 - Algorithms & tools
 - Services

to maintain IGS "gold standard" and to enable full exploitation of new capabilities in science and engineering

The Good Old Days ...

System		Blocks	Signals	Sats*)
GPS		IIA IIR-A/B IIR-M IIF	L1 C/A, L1/L2 P(Y) L1 C/A, L1/L2 P(Y)	7 12 7 5(+1)
GLONASS		Μ	L1/L2 C/A + P	24
	*) Ctot	A May 2014, hreakata i	ndianta antallitan nativat daglarad bagit	h. /an arationa

*) Status May 2014; brackets indicate satellites not yet declared healthy/operational

IGS

... and Today's "System of Systems"

System	Blocks	Signals	Sats*)
GPS	IIA IIR-A/B IIR-M IIF	L1 C/A, L1/L2 P(Y) L1 C/A, L1/L2 P(Y) +L2C +L5	7 12 7 5(+1)
GLONASS	M K	L1/L2 C/A + P +L3	24 (1)
BeiDou	GEO IGSO MEO	B1, B2, B3 B1, B2, B3 B1, B2, B3	5 5 4
Galileo	IOV	E1, (E6), E5a/b/ab	(4)
QZSS	IGSO	L1 C/A, L1C, SAIF L2C, E6 LEX, L5	1
IRNSS	IGSO	L5, S	(2)

*) Status May 2014; brackets indicate satellites not yet declared healthy/operational

IGS Workshop, 23-27 Jun. 2014, Pasadena 5

Multi-GNSS Benefits – Visible Satellites IGS

- More signals in space
 - Already ~40 satellites in Asia
- Improved atmospheric sounding
 - 3D tomography
 - Separation of height and tropo
- Improved PPP
 - Faster convergence
 - Faster ambiguity resolution
 - Increased robustness

http://igs.org

IGS Workshop, 23-27 Jun. 2014, Pasadena 7

Multi-GNSS Benefits – Improved Signals _{IGS}

- Unencrypted signals on multiple frequencies
 - 2-frequency radio-occultations up to low tangent altitudes
 - Reduced susceptibility to scintillation
- Advanced signal structures
 - Reduced multipath sensitivity
 - Very low code noise (AltBOC) (PPP, GNSS-R)
 - Pilot-only signals (weak signal tracking for RO)

(H. T. Diessengo, InsideGNSS 2012/09)

8

Multi-GNSS Benefits – Clocks

- Highly stable clocks
 - Constrained POD
 - Discover orbit modeling deficiencies
 - Improved real-time services
 - Improved kinematic PPP

http://igs.org

IGS Workshop, 23-27 Jun. 2014, Pasadena

Multi-GNSS Benefits – Diversity

- Different
 - Satellites
 - Orbital periods
 - Orbital planes
- Reveal orbit modeling errors (SLR, SRP)
- Avoid GPS 24h commensurability
 - Product interval = 2x orbital period
- Provide improved EOP and geocenter observability

Multi-GNSS Experiment (MGEX)

- Multi-GNSS Experiment (MGEX)
 - MGEX call-for-participation released mid-2011 (ongoing)
 - Steered by Multi-GNSS Working Group (MG WG)
- Some 30 contributing agencies from 20 countries
- About 110 stations worldwide, mostly real-time

MGEX Products

- Initial Precise Orbit and Clock Products
 - Galileo
 - QZSS
 - BeiDou
- Prototype Differential Code Bias Product
- Cumulative Broadcast Ephemerides
- See Session PY07 for further details

- Characterization of new signals and equipment
 - Noise and multipath
 - Biases
 - Phase centers
- Characterization of new satellites
 - Attitude
 - Solar Radiation Pressure
 - Phase centers
- Modeling quality of new constellations must match or exceed GPS to take full advantage of Multi-GNSS

- Don't let MGEX become a "parallel universe"
- Unification of IGS legacy and MGEX networks
 - Needs forceful transition to RINEX3 and single data holding
 - Needs (new?) tools for format conversion and quality control
- Standardization
 - Characterize new GNSSs
 - Tease system providers for information
 - Define and document processing conventions
- Integration of new systems into legacy analysis center software and processes
 - Tolerate multi-GNSS observations/products in all processes
 - Process multi-GNSS data (individual ACs, combination)

Multi-GNSS Challenges – Workforce

- IGS is already working at its limits
 - No staff for multi-GNSS work
 - No staff for s/w development
 - New services (real-time) bind resorces
- Working groups and ACs still (too) focussed on legacy GPS/GLO work
- Review IGS goals and priorities
 - Legacy service
 - Real-time
 - Multi-GNSS
 - Monitoring

Recruit New Workforce!

http://igs.org

Multi-GNSS Challenges – Competition

- IGS no longer leads the crowd
 - Wake-up (or fall behind)
- GNSS industry has taken over
 - "Yes we can"
 - Proprietary networks (homogeneous, global real-time)
 - (Near-)real-time orbit and clock determination for GAL, BDS
 - High-performance PPP services
- Booming iGMAS
 - 8 analysis centers for multi-GNSS processing and monitoring

Preparing for the Future

- New constellations will be operational by 2020
- Proposed steps
 - Adapt ANTEX, RINEX, SP3 ("now")
 - RINEX3/multi-GNSS Quality Control Tools (end 2014)
 - RINEX3 transition and unified data archive (mid 2015)
 - Multi-GNSS product standards (end 2014)
 - Multi-GNSS combination (end 2015)
 - Multi-GNSS pilot project (mid 2016)
- Align IGS scope and service portfolio with
 - Available resources
 - Changed environment (industrial/governmental services)
 - IGS role as an IAG service (science, geodesy)