

Real time precise GPS constellation and clocks estimation by means of a Kalman filter

D. Laurichesse Centre National d'Etudes Spatiales, Toulouse

Introduction Kalman filtering: a new approach for real-time orbits and clocks determination

Real time GNSS orbits and clocks computation is routinely performed, for example in the framework of the Real Time IGS project. Most of the RTIGS analysis centers use a Kalman filter to compute the clocks, orbits are in general estimated using a least-squares filter based on past data, and extrapolated by a model, such as predicted IGS orbits (IGUs). By nature, this method is not optimal and limits the precision of the orbits.

We present a study to implement clocks and orbits estimation in real time by means of a Kalman filter, the orbital dynamics being included in the state vector of the filter.

This approach is routinely applied by JPL and Trimble for their respective applications (cf references)

Motivation for this study		
	IGU [h+3,h+9] orbit error effect on measurements	 The current management of a priori orbits is not fully satisfactory Decision was taken to improve the Kalman filter
The CNES IGS Real Time analysis center uses a-priori orbits	0.15	 To compute both clocks AND orbits To minimize external interfaces, a-priori information and thus improve robustness

- Ex. IGU: 6 hours batches extrapolated to obtain the real-time part of the orbit [h+3, h+9]
- +Like most real time analysis centers

In addition, CNES promotes a new technique for ambiguity resolution

- Ambiguity resolution requires an accurate measurement model
- A-priori orbit error is the main contributor to the error budget
- Error is mainly due to extrapolation

Implementation (2)

- +Orbit error impact on measurement model error is roughly ~ horizontal errors / 4
- +Should be < $\frac{1}{4}$ N1 wavelength (2,5 cm)

Implementation of the Kalman filter for orbits and clocks estimation (1)

Orbit propagation

Elaborate force model and 6th order Runge-Kutta integrator

Force	Amplitude (m/s ²)	Model				
		EIGEN RL02 bis				
Geopotential	0.5	Degree and order 12				
Ocopotentiai	0.5	Secular and periodic				
		terms				
Third body	10 -6	Moon, Sun, Venus				
Tinita body	10	JPL DE 405				
Direct solar pressure radiation	10 ⁻⁸	Sphere				
Solid tides	10 ⁻⁹	Anelastic Earth model				
Y bias	10 ⁻⁹					
Empirical forces	10 ⁻⁹	Orbital frame, constant and 1/rev				

Orbit correction

Goal: measurement model accuracy < 5 mm

Model term	Amplitude (m)	Remark
Propagation distance	107	Incl. Sagnac effect
Ionosphere	10	Corrected for 1 st order using dual frequency measurements
Solid earth tide	0.10	Routine dehanttideinel.f
Phase Wind-Up	0.10	Wu & al.
Troposphere	0.10	Zenithal delay Mapping function: Stanag
Attitude law	0.10	Nominal
Satellites and stations PCV and PCO	0.01	igs08_www.atx
		Routine hardisp.f

Earth orientation

Frames

- Inertial: GCRF
- Terrestrial: ITRF2008

Interconnection

- Precession: IAU2000
- Nutation: IAU2000 (dx and dy corrections from IERS Bulletin A)

Sub-daily Earth orientation variations Applied diurnal and semidiurnal variations in x,y, UT1 (IERS 2003 interp.f)

Typical parameterization (32 satellites, 70 Stations)

Estimated parameters
 + Polar motion

Empirical forces	10 5	(sub-solar phased)		Ocean tide loading	0.01	http://www.oso.chalmers.se/ ~loading	 UT1 (not observable with GNSS, a priori value taken from gpsrapid.daily bulletin at USNO)
Ocean tides	10 ⁻¹⁰	FES 2004		D. 1. 1. 1. 20	0.005	2 nd order correction on	→ LOD
Relativity	10 ⁻¹⁰	Schwarzchild]	Relativistic effects	0.005	clocks gravitational time delay	

Fault detection

Ambiguity resolution			iypical pa			z satemics,	ro otations,	
	Droprocessing		Parameter	Quantity	Typical	Initial covariance	Model noise	Model noise
	Preprocessing		Positions	3 per satellite	32*3	1 m	0	0
	 Detects phase jumps and eliminates erro 	neous measurements	Velocities	3 per satellite	32*3	0.001 m/s	0	0
			Solar pressure coefficient	1 per satellite	32	1	10 ⁻⁵	2.5 10 ⁻¹⁶
	Kalman Filter		Y Bias	1 per satellite	32	10 ⁻¹³ m/s ²	10 ⁻¹³ m/s ²	2.5 10 ⁻¹⁴ m/s ²
Ambiguity resolution follows an undifferenced formulation (see ref)	 Removes high residual measurements (2) 	20 m code and 5 cm phase cut-offs)	Radial acceleration (cst, sin, cos)	3 per satellite	32*3	(0, 0, 0) m/s²	(0, 0, 0) m/s ²	(0, 0, 0) m/s²
 Ambiguity resolution follows an unumerenced formulation (see ref) 	 Implements of a downdating algorithm 		Along-track acceleration	3 per satellite	32*3	(10 ⁻¹⁰ , 10 ⁻¹⁰ , 10 ⁻¹⁰) m/s ²	(10 ⁻¹³ , 10 ⁻¹² , 10 ⁻¹²) m/s ²	2.5(10 ⁻¹⁴ , 10 ⁻¹³ ,10 ⁻¹³) m/s ²
• Midelene - Nerroudene echeme		# of fixed ambiguities	Cross-track acceleration	3 ner satellite	32*3	$(10^{-10}, 10^{-10}, 10^{-10})$	$(10^{-13}, 10^{-12}, 10^{-12})$	2.5(10 ⁻¹⁴ , 10 ⁻¹³ , 10 ⁻¹³)
• vildelane + Narrowiane scheme			(cst, sin, cos) Polar motion	5 per suteinte	52 5	m/s ² 5.10 ⁻⁴ arcsec	m/s ² 5.10 ⁻⁵ arcsec	m/s ² 10 ⁻⁵ arcsec
	Maneuver detection		(u, v)	2	2	0	0	
 No explicit difference in the resolution process 	 Based on pseudorance residuals 	25 - MA	LOD	1	1	10 ⁻⁸ s/s	0 10 ⁻¹¹ s/s	0 10 ⁻¹² s/s
			Satellite clock	1 per satellite	32	inf	inf	inf
Ambiguity resolution improves orbits accuracy and outputs clocks	 Resets all satellite parameters 		Satellite bias (code-phase)	1 per satellite	32	1 m	1 mm	0.1 mm
compatible with direct ambiguity resolution for isolated receivers			Station clock	1 per station	70	inf	inf	inf
 PPP-AR 			Station bias (code-phase)	1 per station	70	1 m	1 m	1 m
	Ambiguity fixing		Zenithal tropospheric delay	1 per station	70	0.5 m	1 mm	0.25 mm
	 Monitors N1 ambiguity fixing ratio 		Phase ambiguities	12 per station	70*12	1 m	0	0
	 Resets satellite ambiguity vector state 			(max)	1662			
		Epoch (Days) N1 divergence	800 psetComplet	udorange + 800 te epoch proces) phase me ssing: extra	easurements at eac polation + correction	ch epoch on ~ 10 sec CPU t	ime
ctual results								
Results over a full draco	nitic year (09/2010 to 08/2011)		Results using	actual rea	al-time	measureme	nts	
(replay with IC	GS measurements)	 Real-Time network (65 stations), IGS F 	RT Service framework					
	Daily 1D arrara	Use of several casters: igs-ip, gfz, NrC	an, ign, unavco, (noaa)					
GPS network (80 IGS stations)	GPS network (80 IGS stations)		Timespan: 10 days (01/14/2013 to 01/23/2013)					
90 -	0.15	1D error) error	
60 - tukt holm reso thu3 nyall tixi fair whit yell bake qaq1 retylofn yakt		90 • eur2 • nya2 hofn • kir0	Contraction	0.15				• Mean error = 1.8 cm

References Formulation	Real time applications	Other implementations
 D. Laurichesse, F. Mercier, J.P. Berthias, P. Broca, L. Cerri, "Integer Ambiguity Resolution or Measurements and its Application to PPP and Satellite Precise Orbit Determination", Naviga Navigation, Vol. 56, N° 2, Summer 2009 P. Collins, S. Bisnath, F. Lahaye, P. Heroux, "<u>Undifferenced GPS Ambiguity Resolution Using and Ambiguity Datum Fixing</u>", Navigation, Journal of the institute of Navigation, Vol. 57, N° D.D. McCarthy & G. Petit, "IERS Conventions 2003", IERS Technical Note 32, Frankfurt am fuer Kartographie und Geodaesie, 2004. 	ndifferenced GPS Phase n, Journal of the institute ofD. Laurichesse, F. Mercier, "Real-time PPP with undifferenced integer ambiguity EGU 2010, Viennane Decoupled Clock Model 2010D. Laurichesse, L. Cerri, J.P. Berthias, F. Mercier, « Real time precise GPS cons means of a Kalman filter », Proceedings of ION GNSS 2013, Nashville, 2013ain: Verlag des BundesamtsSundesamts	resolution, experimental results", Xiaoming Chen and al., "Trimble RTX, an Innovative New Approach for Network RTK ", Trimble white paper Willy Bertiger and al., « First orbit determination performance assessment for the OCX navigation software in an operational environment », proceedings of ION GNSS 2012